

ICE, CLOUD, and Land Elevation Satellite
(ICESat) Project

GLAS_HDF Detailed Design
Revision -

November 1, 2012

SGT/Jeffrey Lee
Cryospheric Sciences Laboratory

Hydrospheric and Biospheric Processes
NASA Goddard Space Flight Center

Goddard Space Flight Center
Greenbelt, Maryland

National Aeronautics and
Space Administration

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

iii

Table of Contents

Table of Contents ... iii	

List of Figures .. viii	

List of Tables .. ix	

1.0	
 Introduction .. 1-1	

1.1	
 Identification of Document .. 1-1	

1.2	
 Scope ... 1-1	

1.3	
 Purpose and Objectives ... 1-1	

1.4	
 Acknowledgements .. 1-2	

1.5	
 Document Status and Schedule ... 1-2	

1.6	
 Document Change History ... 1-2	

1.7	
 Documentation Conventions .. 1-2	

2.0	
 Related Documentation ... 2-1	

2.1	
 Parent Documents .. 2-1	

2.2	
 Applicable Documents .. 2-1	

2.3	
 References ... 2-1	

3.0	
 Driving requirements .. 3-1	

4.0	
 Environment ... 4-1	

4.1	
 Hardware .. 4-1	

4.2	
 Tools ... 4-1	

5.0	
 Software Architecture ... 5-1	

5.1	
 Architectural Components .. 5-1	

5.1.1	
 common_libs .. 5-1	

5.1.2	
 gsas_lib .. 5-2	

5.1.3	
 glashdf_lib .. 5-2	

5.1.4	
 gla_codegen .. 5-2	

5.1.5	
 glahxx_api .. 5-3	

5.1.6	
 glaxx_h5_convert ... 5-3	

5.1.7	
 glaxx_dd .. 5-3	

5.1.8	
 glah_meta .. 5-3	

5.1.9	
 glah_brw .. 5-3	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

iv

6.0	
 Functional Overview .. 6-1	

6.1	
 HDF5 Conversion Process ... 6-2	

6.1.1	
 Inputs/Outputs ... 6-2	

6.1.2	
 Control ... 6-3	

6.1.3	
 Process Initiation ... 6-4	

6.1.4	
 Error Detection Recovery .. 6-4	

6.2	
 Data Dictionary Generation Process .. 6-4	

6.2.1	
 Control ... 6-4	

6.2.2	
 Process Initiation ... 6-5	

6.2.3	
 Inputs/Outputs ... 6-5	

6.2.4	
 Error Detection Recovery .. 6-5	

6.3	
 Browse Attachment Process .. 6-5	

6.3.1	
 Inputs/Outputs ... 6-5	

6.3.2	
 Control ... 6-6	

6.3.3	
 Process Initiation ... 6-6	

6.3.4	
 Error Detection Recovery .. 6-6	

6.4	
 Detached Metadata Creation Process ... 6-6	

6.4.1	
 Inputs/Outputs ... 6-6	

6.4.2	
 Control ... 6-7	

6.4.3	
 Process Initiation ... 6-8	

6.4.4	
 Error Detection Recovery .. 6-8	

7.0	
 common_libs component ... 7-1	

7.1	
 const_lib ... 7-1	

7.1.1	
 Globals ... 7-1	

7.1.2	
 Subroutines .. 7-2	

7.2	
 err_lib ... 7-2	

7.2.1	
 Globals ... 7-3	

7.2.2	
 Subroutines .. 7-3	

7.3	
 mutil_lib .. 7-3	

7.3.1	
 Globals ... 7-4	

7.3.2	
 Subroutines .. 7-4	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

v

7.4	
 time_lib ... 7-5	

7.4.1	
 TAI-UTC Ancillary File ... 7-5	

7.4.2	
 Globals ... 7-5	

7.4.3	
 Subroutines .. 7-6	

7.5	
 math_lib .. 7-7	

7.5.1	
 Globals ... 7-7	

7.5.2	
 Subroutines .. 7-8	

7.6	
 cntl_lib .. 7-8	

7.6.1	
 Control Files ... 7-8	

7.6.2	
 Subroutines .. 7-9	

7.7	
 anc_lib .. 7-9	

7.8	
 hdf_lib ... 7-9	

7.8.1	
 Parameters .. 7-10	

7.8.2	
 CF Parameter Attributes .. 7-11	

7.8.3	
 CF Global Attributes .. 7-12	

7.8.4	
 Descriptive Labeling .. 7-14	

7.8.5	
 Globals ... 7-14	

7.8.6	
 Subroutines .. 7-14	

7.9	
 Dependencies .. 7-16	

8.0	
 gsas_lib/glashdf_lib implementation note .. 8-1	

9.0	
 gsas_lib .. 9-1	

9.1	
 Support Modules .. 9-1	

9.2	
 Product-Specific Modules ... 9-2	

10.0	
 glashdf_lib component ... 10-1	

10.1	
 GLAS_HDF Metadata .. 10-1	

10.1.1	
 Global Metadata .. 10-1	

10.1.2	
 Grouped Metadata ... 10-1	

10.1.3	
 ancillary_data ... 10-2	

10.1.4	
 Provenance Metadata .. 10-2	

10.1.5	
 Globals ... 10-4	

10.1.6	
 Subroutines .. 10-4	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

vi

11.0	
 glahxx_api component ... 11-1	

11.1	
 Rate Groups ... 11-1	

11.2	
 Logical Groups ... 11-2	

11.3	
 Dimension Scales ... 11-2	

11.4	
 Globals ... 11-3	

11.5	
 Subroutines .. 11-3	

12.0	
 glaxx_h5_convert component .. 12-1	

12.1	
 main_init ... 12-1	

12.2	
 glaxx_h5_convert ... 12-3	

12.3	
 Handling Multi-Rate Data ... 12-5	

12.4	
 Product-Specific Model Deviations ... 12-5	

12.4.1	
 gla04_h5_convert .. 12-6	

12.4.2	
 gla01_h5_convert .. 12-6	

13.0	
 GLAH_META component .. 13-1	

13.1	
 main_init ... 13-1	

13.2	
 glah_meta ... 13-1	

13.3	
 glah_meta Product Input .. 13-2	

14.0	
 glah_brw component .. 14-1	

15.0	
 gla_codegen component .. 15-1	

15.1	
 Developmental Considerations .. 15-1	

15.2	
 Implementation ... 15-1	

15.2.1	
 h5_codegen ... 15-1	

15.2.2	
 gla_codegen .. 15-3	

Appendix A.	
 Requirements Trace ... 1	

Requirements ... 1	

Appendix B.	
 directories, makefiles and compilation ... 1	

Directories .. 1	

Makefiles .. 2	

Building .. 2	

Appendix C.	
 GLAS_HDF Product Development Procedures 1	

Spreadsheet Development .. 1	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

vii

Code Development .. 2	

Appendix D.	
 GLOSSARY and acronyms .. 7	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

viii

List of Figures

Figure 5-1 Architectural Relationship ... 5-2	

Figure 6-1 GLAS_HDF Overview .. 6-1	

Figure 6-2 GLAS_HDF Dataflow ... 6-2	

Figure 10-1 GLAS_HDF Metadata Flow .. 10-2	

Figure 12-1 main_init .. 12-2	

Figure 12-2 glahxx_h5_convert .. 12-4	

Figure 12-3 Data Storage Comparison .. 12-5	

Figure 13-1 glah_meta ... 13-2	

Figure 15-1 gla_codegen ... 15-5	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

ix

List of Tables

Table 2-1 : References ... 2-1	

Table 3-1 Driving Requirements ... 3-1	

Table 3-2 GLAS_HDF Product Types .. 3-2	

Table 4-1 Tools .. 4-1	

Table 5-1 Architectural Components .. 5-1	

Table 6-1 HDF5 Conversion Inputs .. 6-2	

Table 6-2 HDF5 Conversion Outputs .. 6-3	

Table 6-3 glaxx_h5_convert Control ... 6-3	

Table 6-4 Data Dictionary Generation Inputs ... 6-5	

Table 6-5 Data Dictionary Generation Outputs ... 6-5	

Table 6-6 Browse Attachment Inputs .. 6-5	

Table 6-7 Browse Attachment Outputs ... 6-6	

Table 6-8 Detached Metadata Creation Inputs .. 6-6	

Table 6-9 Detached Metadata Creation Outputs ... 6-7	

Table 6-10 glaxx_h5_convert Control ... 6-7	

Table 7-1 common_lib Libraries ... 7-1	

Table 7-2 const_lib Globals ... 7-1	

Table 7-3 const_lib Subroutines .. 7-2	

Table 7-4 err_lib Globals ... 7-3	

Table 7-5 err_lib Subroutines .. 7-3	

Table 7-6 mutil_lib Globals ... 7-4	

Table 7-7 mutil_lib Subroutines .. 7-4	

Table 7-8 time_lib Globals .. 7-5	

Table 7-9 time_lib Subroutines ... 7-6	

Table 7-10 math_lib Globals ... 7-8	

Table 7-11 math_lib Subroutines .. 7-8	

Table 7-12 math_lib Subroutines .. 7-9	

Table 7-13 h5_param_type .. 7-10	

Table 7-14 Parameter Attributes ... 7-11	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

x

Table 7-15 CF Global Attributes ... 7-12	

Table 7-16 hdf_lib Globals .. 7-14	

Table 7-17 hdf_lib Subroutines ... 7-14	

Table 7-18 common_lib Libraries and Dependencies ... 7-16	

Table 9-1 GSAS_LIB Support Modules ... 9-1	

Table 9-2 Product-Specific Modules ... 9-2	

Table 10-1 glashdf_lib Globals ... 10-4	

Table 10-2 glashdf_lib Subroutines ... 10-4	

Table 11-1 glahxx_api Globals ... 11-3	

Table 11-2 glahxx_api Subroutines ... 11-4	

Table 15-1 h5_codegen Subroutines ... 15-2	

Table 15-2 gla_codegen_mod Subroutines ... 15-4	

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

1-1

1.0 INTRODUCTION

ICESat (Ice, Cloud, and land Elevation Satellite) was the benchmark Earth Observing
System mission for measuring ice sheet mass balance, cloud and aerosol heights, as well
as land topography and vegetation characteristics. From 2003 to 2009, the ICESat
mission provided multi-year elevation data needed to determine ice sheet mass balance as
well as cloud property information, especially for stratospheric clouds common over
polar areas. It also provided topography and vegetation data around the globe, in addition
to the polar-specific coverage over the Greenland and Antarctic ice sheets.

The GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) was the primary
instrument aboard ICESat. GLAS was a laser altimeter that determined the distance from
the satellite to the Earth’s surface and to intervening clouds and aerosols by precisely
measuring the time it takes for a short pulse of laser light to travel to the reflecting object
and return to the satellite.

1.1 Identification of Document

This document is identified as the Detailed Design Document that describes the software
that converts GLAS Level 1-2 integer-binary products (GLAS_BIN) into HDF5 format
(GLAS_HDF).

1.2 Scope

This document describes the GLAS_HDF processing software. Original GLAS products
(GLAS_BIN) were created in an integer-binary format. The GLAS_HDF software
converts the GLAS_BIN products into HDF5 format in order to make the products more
interoperable with future ICESat-2 products and to provide a testbed for designing and
creating products in standards-compliant format.
This document focuses on the GLAS_HDF product generation executables (PGEs) that
perform the actual transformation. It does not describe SDMS (Scheduling and Data
Management System), the surrounding middleware that was re-used from I-SIPS (ICESat
Science Investigator-led Processing System) to manage data availability, cataloging, job-
control, and data transfer functions.

1.3 Purpose and Objectives

The purpose of this document is to describe the GLAS_HDF software. It states the
requirements of the effort and traces those requirements to actual implementation. Since
there are 15 nearly identical PGEs, this document details the software constructs as
models in a fairly generic fashion, identifying specific PGEs only when a major deviation
from the model is made.

The objectives of this document are to serve as a reference source which would assist the
maintenance programmer in making changes which fix or enhance the documented

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

1-2

software; to provide a reference for other programmers attempting to reuse the whole or
parts of the software; and serve as a guide for others creating similar software.

1.4 Acknowledgements

The following individuals/organizations contributed to this effort:

• ICESat GLAS and ICESat-2 ATLAS Science Software Development Teams
SGT/Jeffrey Lee, SGT/John DiMarzio, SGT/Peggy Jester, SGT/Suneel Bhardwaj,
SSAI/Kristine Barbieri, SGT/LeeAnne Roberts, Sigma/David W Hancock,
SGT/Thomas Feroli, Sigma/Vijay Suchdeo, SGT/Andrew Griffin

• ESDIS
 423/Jeanne Behnke, 432/Jeff Walter, 423/Hampapuram Ramapriyan

• Earth Science Data Systems Working Groups
 Standards Process Group
 Technical Infusion Working Group

• NSIDC (ICESat Data Center)
Siri Jodha Khalsa, Doug Fowler

• SMAP Product Development Team
JPL/Barry Weiss

1.5 Document Status and Schedule

No further updates to this document are planned.

1.6 Document Change History

Revision Date Nature of Change

- November 1, 2012 Original Version

1.7 Documentation Conventions

Within this document several documentation conventions are used to either strongly or
generically identify items.

Term Explanation

HDF5_LIBRARY Refers to the software, a tool or a capability build into the HDF5 library
provided by hdfgroup.org.

GLAS_HDF Contextually refers to either the GLAS_HDF effort or the GLAS_HDF
product set.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

1-3

Term Explanation

GLAS_BIN Refers to the GLAS integer-binary data products.

glaxx Refers to a specific GLAS integer-binary file type (where xx is 01-15)

glahxx Refers to a specific GLAS HDF5 file type (where xx is 01-15)

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

2-1

2.0 RELATED DOCUMENTATION

2.1 Parent Documents

This document is subordinate to any top-level mission or instrument management plan
documents, and as such, recognizes these documents as external parent documents in
lineage. The recognized external EOSDIS and GLAS parent documents superior to this
document are listed below.

NASA Earth Observing System Geoscience Laser Altimeter System GLAS Science
Requirements Document, Version 2.01, October 1997, Center for Space Research,
University of Texas at Austin.
GLAS Science Software Management Plan, NASA/TM-1999-208641/Version 3/
Volume 1, August 1998, NASA/GSFC Wallops Flight Facility.

2.2 Applicable Documents

The following documents are related to, or contain policies or references pertinent to the
contents of this document.

GLAS_HDF Standard Data Products Specification, Version 9.1, August 2012,
NASA Goddard Space Flight Center.

GLAS Standard Data Products Specification - Level 1, Version 9.0, August 2012,
NASA Goddard Space Flight Center.

GLAS Standard Data Products Specification - Level 2, Version 9.0, August 2012,
NASA Goddard Space Flight Center.

GLAS Standard Data Products Specification - Data Dictionary, Version1.0,
August 2012, NASA Goddard Space Flight Center.

GLAS_HDF Standard Data Product, Revision -, November 1, 2012, NASA
Goddard Space Flight Center

2.3 References

Table 2-1 contains a list of references found useful and/or authoritative.
Table 2-1 : References

Reference Description

http://hdfgroup.org HDF5 Documentation and examples.

http://glas.wff.nasa.gov/prod_format/v60_products GLAS products data dictionary.

http://earthdata.nasa.gov/data/references/data-metadata-formats NASA Data and Metadata format
information.

http://science.nasa.gov/earth-science/earth-science-
data/satellite-mission-data-system-requirements/

Satellite mission data requirements.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

2-2

Reference Description

http://earthdata.nasa.gov/our-community/esdswg/standards-
process-spg/rfc

List of EOSDIS-approved standards.

http://earthdata.nasa.gov/our-community/esdswg/standards-
process-spg/rfc/esds-rfc-007

EOSDIS HDF5 RFC

http://earthdata.nasa.gov/our-community/esdswg/standards-
process-spg/rfc/esds-rfc-009-file-format-satellite-atmospheric-
chemistry-data

EOSDIS Aura File Format Technical
Note

http://earthdata.nasa.gov/our-community/esdswg/standards-
process-spg/rfc/esds-rfc-021

EOSDIS CF Metadata Conventions RFC

http://earthdata.nasa.gov/our-community/esdswg/standards-
process-spg/rfc/esds-rfc-022

EOSDIS NetCDF/HDF5 RFC

http://cf-pcmdi.llnl.gov/ CF Metadata

http://www.nodc.noaa.gov/data/formats/netcdf/ NOAA NODC NetCDF Templates

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

3-1

3.0 DRIVING REQUIREMENTS

The following driving requirements form the basis for GLAS_HDF software
implementation.

Table 3-1 Driving Requirements

Identifier Requirement

REQ_GLAS_HDF_001 The software shall transform GLAS integer-binary products into a
standards compliant format.

REQ_GLAS_HDF_001.1 The software shall use HDF5 as the standard data product file format
(ESDS-RFC-007).

REQ_GLAS_HDF_001.2 The software shall create the products with HDF5 CF-compliant parameter
attributes to make the products self-documenting. This will allow data
dictionaries to be created directly from the products themselves.

REQ_GLAS_HDF_001.3 The software shall create the products with NetCDF-compliance in mind.
This may allow the products to be used with NetCDF/HDF tools.

REQ_GLAS_HDF_001.4 The software shall use compression where possible to decrease the size of
the products.

REQ_GLAS_HDF_001.5 The software shall perform only transformation processes. No new science
parameters shall be created.

REQ_GLAS_HDF_001.6 The software shall not put “spare” or un-implemented parameters on the
products.

REQ_GLAS_HDF_002 The software shall make efforts to improve the usability of the products.

REQ_GLAS_HDF_002.1 The software shall create products in such a manner that individual data
values may be independently read.

REQ_GLAS_HDF_002.2 The software shall logically group parameters, but at a level where desired
data are not hidden.

REQ_GLAS_HDF_002.3 The software shall transform the parameters from scaled-integer units into
scientific units.

REQ_GLAS_HDF_002.4 The software shall provide a mechanism whereby each instance of a
parameter can be associated with a time stamp and a laser shot number.

REQ_GLAS_HDF_002.5 The software shall store variable-rate waveforms in volts and provide
relative sample times that will enable easy decompression of the
waveforms.

REQ_GLAS_HDF_002.6 The software shall incorporate multi-rate data within the same product.

REQ_GLAS_HDF_002.7 The software shall incorporate existing browse information into the
products where available.

REQ_GLAS_HDF_002.8 The software shall unpack bit flags where existing unpack routine already
exist.

REQ_GLAS_HDF_003 The software shall incorporate metadata into the products.

REQ_GLAS_HDF_003.1 The products will incorporate both human-readable and computer-parseable

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

3-2

Identifier Requirement

metadata.

REQ_GLAS_HDF_003.2 The software shall support the same method of metadata exchange with
NSIDC as the GLAS_BIN products. (External .MET files in ECHO
format.)

REQ_GLAS_HDF_003.3 The software will store lineage metadata on the products such that prior
processing information is not lost.

REQ_GLAS_HDF_003.4 The software shall support product-level digital object identifiers (DOIs) as
defined by the ESDIS pilot DOI effort.

REQ_GLAS_HDF_003.5 The software shall support UUIDs as granule-level unique identifiers to
extend the ESDIS pilot DOI effort.

REQ_GLAS_HDF_004 The software shall re-use existing software to the maximum extent possible.

REQ_GLAS_HDF_004.1 The software shall re-use existing GLAS Science Algorithm Software
(GSAS).

REQ_GLAS_HDF_004.2 The software shall re-use existing MABEL Science Algorithm Software.

REQ_GLAS_HDF_004.3 The software shall be written to interface with re-used I-SIPS SDMS
middleware for data management and job control.

The required GLAS_HDF data products types are listed in Table 3-2.
Table 3-2 GLAS_HDF Product Types

Product ID Product Name Level

GLAH01 Altimetry Data File 1A

GLAH02 Atmosphere Data File 1A

GLAH03 Engineering Data File 1A

GLAH04 Combined LPA, LRS, GYRO, IST, BST, SPCA Data File 1A

GLAH05 Waveform-based Elevation Corrections File 1B

GLAH06 Elevation File 1B

GLAH07 Backscatter File 1B

GLAH08 Boundary Layer and Elevated Aerosol Layer Heights File 2

GLAH09 Cloud Height for Multiple Layers File 2

GLAH10 Aerosol Vertical Structure File 2

GLAH11 Thin Cloud/Aerosol Optical Depth File 2

GLAH12 Ice Sheet Products File 2

GLAH13 Sea Ice Products File 2

GLAH14 Land Products File 2

GLAH15 Ocean Products File 2

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

4-1

4.0 ENVIRONMENT

The GLAS_HDF software is developed within the re-used I-SIPS environment. The
GLAS_HDF effort is the third-reuse of I-SIPS and the accompanying SDMS software.
The second reuse is an ongoing MABEL processing system. MABEL is the airborne
demonstrator instrument for the ICESat-2 photon-counting LIDAR.

4.1 Hardware

The I-SIPS environment consists of Linux-based x86 hardware. Sufficient computing and
storage resources exist to handle both development and execution of the software system.

4.2 Tools

The MABEL effort is a prototype for the ICESat-2 Atlas Science Algorithm Software
(ASAS) and several new tools were adopted with an outlook towards ICESat-2 software
development. The GLAS_HDF effort has incorporated those new tools as well. Tools
used in GLAS_HDF development are listed in Table 4-1.

Table 4-1 Tools

Category Tool

Development (compiler) gfortran 4.2.x

Development (tool) IDL 8.0

Library HDF5 1.8.9 (HDF5_LIBRARY)

SCM AccuRev

Issue Tracking Atlassian Jira

Wiki Atlassian Confluence

In addition, many of the software management processes planned for ICESat-2 were
adopted for this development effort.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

5-1

5.0 SOFTWARE ARCHITECTURE

The GLAS_HDF software is comprised of several architectural components. Some of
these are re-used legacy code; some are newly developed; and others are machine-
generated. Two types of PGEs are created for each product type: a data converter and a
data dictionary creator. Since each respective data conversion and data dictionary PGE is
nearly identical in structure, a generic PGE will be used to describe the architecture.
Three additional PGEs were created to 1) create the GLAS_HDF product APIs, 2) embed
the browse products and 3) generate detached metadata files.

5.1 Architectural Components

GLAS_HDF architectural components are listed in Table 5-1. Where “xx” is used, an
individual PGE exists for each product type.

Table 5-1 Architectural Components

Name Description Source

common_lib Common Library reused & improved from
MABEL/GSAS

gsas_lib GSAS Product Library reused from GSAS

glashdf_lib GLAS_HDF-specific Library developed

gla_codegen GLAS_HDF API code generator developed

glaxx_api GLAS_HDF product APIs generated/improved

glaxx_h5_convert GLAS_HDF product conversion PGE developed/generated

glaxx_dd GLAS_HDF data dictionary generation PGE generated/developed

glah_meta GLAS_HDF metadata generation PGE developed

glah_brw GLAS_HDF browse PGE developed (IDL)

Figure 5-1 illustrates the relationships between various components. Each component
will be fully described in its respective detailed design section but briefly described here
in its architectural relationship to other software components.

5.1.1 common_libs

common_lib is a library of generic Fortran routines that provide the base layer for the
GLAS_HDF software. This library was originally re-used from GSAS and is being
maintained and improved by both GLAS_HDF and MABEL development efforts. The
library provides standard error-handling routines, control parsing routines, mathematical
functions, text-handling routines and time conversion routines. The HDF5 and time
routines are major additions from the legacy GSAS code. The HDF5 routines provide a
standardized interface to the HDF5_LIBRARY. The time routines are a port of the HDF-
EOS MDT Toolkit library that removes some of the implementation-specific EOSDIS
conventions.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

5-2

Figure 5-1 Architectural Relationship

5.1.2 gsas_lib

gsas_lib is a nearly-unchanged set of GSAS product routines that provide support
functionality for the re-used routines that read, write and scale GSAS products.
Additional support is provided for reading GLAS_BIN product headers and writing
detached metadata files. This code was changed only to rectify minor compiler
differences.

5.1.3 glashdf_lib

glashdf_lib is a collection of GLAS_HDF-specific routines that are shared by (and
exclusive to) the GLAS_HDF PGEs. These routines are exclusively used to handle
GLAS_HDF metadata.

5.1.4 gla_codegen

HDF5 moves the software burden from the user of a data product to the creator of the
data product. The cost of implementing HDF5 in a standards-compliant manner
introduces even more burden onto the data creator. To alleviate this burden, gla_codegen
reads a GLAS data product description and creates PGEs and product APIs to automate
most of the coding for the conversion and data-dictionary generation routines.

common_libs gla_codegen

glaxx_api gsas_lib

glaxx_h5_convert
glaxx_dd

glah_meta

uses
uses

creates

uses

uses

uses

reuse generated code developed code

glashdf_lib

uses

uses

glah_brw
(IDL)

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

5-3

5.1.5 glahxx_api

An instance of glaxx_api exists for each product type. The initial code is generated by
gla_codegen and then lightly modified by the developer to fully instantiate the API
(application programming interface). Each API provides routines to create, read, write
and document its respective product.

5.1.6 glaxx_h5_convert

An instance of glaxx_h5_convert exists for each product type. The initial code
framework is generated by gla_codegen and then heavily modified by the developer to
fully instantiate the PGE. The primary change required to the initial code is to incorporate
multi-rate data. Since GLAS products contain extensive multi-rate data, this is a non-
trivial change. Code to read and convert the GLAS_BIN products is reused from GSAS.
Once developed, the PGE performs the complete conversion of an input GLAS_BIN
product to GLAS_HDF.

5.1.7 glaxx_dd

An instance of glaxx_dd exists for each product type. The initial code is generated by
glas_codegen and then lightly modified (if required) by the developer to fully instantiate
the PGE. The PGE creates a HTML-based data dictionary from metadata and parameter
attributes stored within a respective GLAS_HDF product type.

5.1.8 glah_meta

glas_meta is a developed PGE which reads an input EOSDIS ESDT file, parses metadata
from any of the GLAS_HDF product types and creates an ECHO-style detached metadata
file for ingest into a EOSDIS-based datacenter.

5.1.9 glah_brw

glah_brw is implemented as generic IDL code that reads a set of indexed color HDF4
images from a HDF4 file, transforms them to TrueColor and writes the transformed
images to a “BROWSE” group in a HDF5 file.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-1

6.0 FUNCTIONAL OVERVIEW

This section describes the functional operation of the GLAS_HDF software. Each PGE
has been briefly described in the previous section. This section will detail the inputs and
outputs of each PGE and illustrate the flow of data within the system. Since it is not part
of the operational system, the gla_codegen process will be described in its own detailed
design section. A high-level overview of the complete system is show in Figure 6-1.

Figure 6-1 GLAS_HDF Overview

There are four primary processes within the GLAS_HDF software system.

• HDF5 Conversion

• Data Dictionary Generation

• Browse Attachment

• Detached Metadata Creation

Each process is instantiated as a single PGE. Figure 6-2 illustrates the flow of these
processes as a comprehensive system.

GLAS_HDF Conversion Software

SDMS: Scheduling and Data Management System: Ingest, Stage, Schedule, Archive, Distribute

ANCxx
(Ancillary)

GLAxx Binary
Files Control Files ESDT Files BRWxx Files

(Browse)
METxx Files
(Metadata)

GLA01 GLA02 GLA03 GLA04 GLA05 GLA06

GLA12 GLA13 GLA14 GLA15

GLA07 GLA08

GLA10 GLA11GLA09

BRWxx GLAH_
Meta METxx

GLAxx HDF5
Files

GLAH01 GLAH02 GLAH03 GLAH04 GLAH05 GLAH06

GLAH12 GLAH13 GLAH14 GLAH15

GLAH07 GLAH08

GLAH10 GLAH11GLAH09

GLA01
_H5

GLA02
_H5

GLA03
_H5

GLA04
_H5

GLA05
_H5

GLA06
_H5

GLA12
_H5

GLA13
_H5

GLA14
_H5

GLA15
_H5

GLA07
_H5

GLA08
_H5

GLA10
_H5

GLA11
_H5

GLA09
_H5

GLAS_BIN

GLAS_HDF

GLAH_
BRW

Altimetry Atmosphere Ancillary Metadata EngineeringKey:

ESDTxx

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-2

Figure 6-2 GLAS_HDF Dataflow

6.1 HDF5 Conversion Process

HDF5 conversion is the primary GLAS_HDF process. It uses the appropriate
glaxx_h5_convert PGE to transform the GLAS_BIN granules into GLAS_HDF granules.
The process is run for each GLAS_BIN granule to be converted.

6.1.1 Inputs/Outputs

Table 6-1 HDF5 Conversion Inputs

Input Description

control control file generated by I-SIPS SDMS that contains the names of input files, names
of output files and any control overrides specified for processing.

TAI_UTC TAI-UTC ancillary input file used for time conversion.

GLAS_BIN GLAS integer-binary granule.

ESDT GLAS Binary

GLAS_HDF

Data Dictionary

Control

glaxx_h5_
convert

glahxx_dd

metadata

data
metadata

control
UUID
DOI

data
metadata

Browse

browse
images

glah_brwbrowse
imagesglah_meta

Control

Control

Control
QA

metadata

metadata

.MET file

metadata
metadata

html

control

stdout

stdout

error/status

error/status

TAI-UTC

error/status

error/status

leapsec

leapsec

TAI-UTC

leapsec

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-3

ESDT EOSDIS-created ESDT file containing inventory and collection-level metadata.

Table 6-2 HDF5 Conversion Outputs

Outputs Description

status/error
messages

Status and/or error messages generated by the software (stdout).

GLAS_HDF Granule converted to HDF5 format.

Result Code Result code indicating success or failure.

6.1.2 Control

Execution instructions for the HDF5 conversion process are contained within a control
file. The control file contains all the control information needed to execute the process.
Control file conventions are described in the detailed design section of
common_libs/cntl_lib. An example control file is listed below and an explanation of each
line follows. Each control file entry is a single line. Ignore the line wrapping in both the
example and explanation.
=GLA05_h5_convert
identifier_file_UUID=D65E7C2A-7BC1-444F-AE6F-991DAD0B45FF
IN_ESDT=./DsESDTGlGLAH05.033.desc 2008-03-03t02:51:46 2008-03-04t01:24:53 33 1
IN_ANC_TAIUTC=../data/tai-utc.dat 888547920.000000 888629107.000000 1 1
IN_GLA05=GLA05_633_2123_002_0141_1_01_0001.DAT 2008-03-03t02:51:46 2008-03-
03t03:13:12 33 1
OUT_GLAH05=GLAH05_633_2123_002_0141_1_01_0001.H5 2008-03-03t02:51:46 2008-03-
03t03:13:12 33 1

Table 6-3 glaxx_h5_convert Control

Control Line Explanation

=GLAxx_h5_convert Control section identifier designated by the name of the PGE.

identifier_file_UUID=UUID UUID generated for each file converted. Uniquely identifies a file.

IN_ESDT=filename start stop
[release] [version]

First argument designates the path and name of an input ESDT file that
corresponds to the input GLAS_BIN file. The second and third arguments
are the start of the data time period for which the ESDT file is valid. These
times may be expressed as CCSDS-A UTC or gps_seconds. In practice,
this time should be the GLAS_BIN granule start/stop time. Release
[optional] is the release number of the ESDT file (normally the same as
the GLAS_BIN release). Version [optional] is the version number of the
ESDT file (normally the same as the GLAS_BIN version).

IN_ANC_TAIUTC=filename
start stop [release] [version]

First argument designates the path and name of an input TAI-UTC file.
The second and third arguments are the start of the data time period for
which the TAI-UTC file is valid. These times must be expressed as
gps_seconds since leap second information (contained within the TAI-
UTC file) is required for conversion between UTC and GPS time. In
practice, this time should be the same GLAS_BIN granule start/stop time.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-4

Control Line Explanation

Release [optional] is the release number of the TAI-UTC. Version
[optional] is the version number of the TAI-UTC.

IN_GLAxx=filename start
stop [release] [version]

First argument designates the path and name of an input GLAS_BIN file
to be converted. The second and third arguments are the start of the data
time period for which the GLAS_BIN file is valid. These times may be
expressed as CCSDS-A UTC or gps_seconds. In practice, this time should
be the GLAS_BIN granule start/stop time. Release [optional] is the release
number of the GLAS_BIN. Version [optional] is the version number of the
GLAS_BIN.

OUT_GLAHxx=filename
start stop [release] [version]

First argument designates the path and name of the output GLAS_HDF
file. The second and third arguments are the start of the data time period
for which the GLAS_HDF file is valid. These times may be expressed as
CCSDS-A UTC or gps_seconds. In practice, this time should be the
GLAS_BIN granule start/stop time. Release [optional] is the release
number of the GLAS_HDF. Version [optional] is the version number of
the GLAS_HDF.

All instances of glaxx_h5_convert share the same control file structure/information with
the exception of the PGE for GLAH04. Since GLA04 is a multi-file granule that is
converted into a single GLAH04 granule, each GLA04 sub-granule requires an additional
IN_GLAxx line in the control. To specify each sub-granule, the keyword “IN_GLAxx”
is changed to “IN_GLAxxyy” where yy is the sub-granule ID (01-06).

6.1.3 Process Initiation

The process is invoked by running the appropriate glaxx_h5_convert PGE with a valid
control file as the sole command-line argument.
Example :
gla06_h5_convert cf_20100305_19393.ctl

6.1.4 Error Detection Recovery

Error/status messages are displayed on stdout. Any errors should be reported to the
software development team for analysis. Upon software termination, a result code is
returned to the parent shell. 0 indicates successful execution; non-zero indicates a failure.

6.2 Data Dictionary Generation Process

The data dictionary generation process uses the appropriate glaxx_dd PGE to create a
HTML-based data dictionary describing the respective product type. The process only
needs to be run once for each representative product type.

6.2.1 Control

The only control information required/available for glaxx_dd is the path and name of a
GLAS_HDF file passed as a command-line argument.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-5

6.2.2 Process Initiation

The process is invoked by running the glahxx_dd PGE with a valid GLAS_HDF filename
as the sole command-line argument.
Example :
glah06_dd GLAH06_633_2123_002_0141_4_01_0001.H5

6.2.3 Inputs/Outputs

Table 6-4 Data Dictionary Generation Inputs

Input Description

GLAS_HDF GLAS_HDF product granule.

Table 6-5 Data Dictionary Generation Outputs

Outputs Description

status/error messages Status and/or error messages generated by the software (stdout).

GLAHxx_data_dict.html HTML-based GLAS_HDF product data dictionary.

Result Code Result code indicating success or failure

6.2.4 Error Detection Recovery

Error/status messages are displayed on stdout. Any errors should be reported to the
software development team for analysis. Upon software termination, a result code is
returned to the parent shell. 0 indicates successful execution; non-zero indicates a failure.

6.3 Browse Attachment Process

The browse attachment process uses IDL and the hdf2hdf5.pro program to copy browse
images from an original GLAS_BRW browse product to a GLAS_HDF product. This
process needs to be run for every granule for which the browse images are available.
Since the browse images are attached to an existing GLAS_HDF file, the GLAS_HDF
file is considered both an input and output.

6.3.1 Inputs/Outputs

Table 6-6 Browse Attachment Inputs

Input Description

GLAS_HDF GLAS_HDF product granule.

GLAS_BRW GLAS_BIN browse product.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-6

Table 6-7 Browse Attachment Outputs

Outputs Description

status/error
messages

Status and/or error messages generated by the software (stdout)

GLAS_HDF GLAS_HDF product granule

6.3.2 Control

The only control information required/available for hdf2hdf5.pro are the names of
corresponding GLAS_BRW and GLAS_HDF files (respectively).

6.3.3 Process Initiation

The process is invoked launching the IDL environment and then running the
hdf2hdf5.pro program with valid GLAS_BRW and GLAS_HDF filenames as respective
comma-separated arguments.

Example:
idl
IDL> .rnew hdf2hdf5
IDL> hdf2hdf5, GLAH06_633_2123_002_0141_4_01_0001.H5,
GLA06_633_2123_002_0141_4_01_BRWS_0001.HDF

6.3.4 Error Detection Recovery

Error/status messages are displayed on stdout. Any errors should be reported to the
software development team for analysis. Since this process is run within the IDL
environment, no result code is set.

6.4 Detached Metadata Creation Process

The detached metadata creation process uses the glah_meta PGE to create a detached
metadata files from an input GLAS_HDF granule. The detached metadata file is required
for an EOSDIS data center to ingest the GLAS_HDF granule. This process needs to be
run for each GLAS_HDF granule created.

6.4.1 Inputs/Outputs

Table 6-8 Detached Metadata Creation Inputs

Input Description

GLAS_HDF GLAS_HDF product granule

TAI_UTC TAI-UTC ancillary input file used for time conversion.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-7

ESDT EOSDIS-created ESDT file containing inventory and collection-level metadata.

Table 6-9 Detached Metadata Creation Outputs

Outputs Description

status/error
messages

Status and/or error messages generated by the software (stdout)

MET Detached metadata file.

Result Code Result code indicating success or failure

6.4.2 Control

Execution instructions for the detached metadata creation process are contained within a
control file. The control file contains all the control information needed to execute the
process. Control file conventions are described in the detailed design section of
common_libs/cntl_lib. An example control file is listed below and an explanation of each
line follows. Each control file entry is a single line. Ignore the line wrapping in both the
example and explanation.
=glah_meta
IN_ESDT=./DsESDTGlGLAH05.033.desc 2008-03-03t02:51:46 2008-03-04t01:24:53 33 1
IN_ANC_TAIUTC=../data/tai-utc.dat 888547920.000000 888629107.000000 1 1
IN_GLAH=GLAH05_633_2123_002_0141_1_01_0001.H5 2008-03-03t02:51:46 2008-03-
03t03:13:12 33 1
OUT_MET=GLAH05_633_2123_002_0141_1_01_0001.MET 2008-03-03t02:51:46 2008-03-
03t03:13:12 33 1

Table 6-10 glaxx_h5_convert Control

Control Line Explanation

=glah_meta Control section identifier designated by the name of the PGE.

IN_ESDT=filename start stop
[release] [version]

First argument designates the path and name of an input ESDT file that
corresponds to the input GLAS_HDF file. The second and third arguments
are the start of the data time period for which the ESDT file is valid. These
times may be expressed as CCSDS-A UTC or gps_seconds. In practice,
this time should be the GLAS_HDF granule start/stop time. Release
[optional] is the release number of the ESDT file (normally the same as
the GLAS_HDF release). Version [optional] is the version number of the
ESDT file (normally the same as the GLAS_HDF version).

IN_ANC_TAIUTC=filename
start stop [release] [version]

First argument designates the path and name of an input TAI-UTC file.
The second and third arguments are the start of the data time period for
which the TAI-UTC file is valid. These times must be expressed as
gps_seconds since leap second information (contained within the TAI-
UTC file) is required for conversion between UTC and GPS time. In
practice, this time should be the same GLAS_HDF granule start/stop time.
Release [optional] is the release number of the TAI-UTC. Version
[optional] is the version number of the TAI-UTC.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6-8

Control Line Explanation

IN_GLAH=filename start
stop [release] [version]

First argument designates the path and name of an input GLAS_HDF file
to be converted. Note that the keyword does not change for different file
types. glah_meta parses the filename to determine the file type. The
second and third arguments are the start of the data time period for which
the GLAS_HDF file is valid. These times may be expressed as CCSDS-A
UTC or gps_seconds. In practice, this time should be the GLAS_HDF
granule start/stop time. Release [optional] is the release number of the
GLAS_HDF. Version [optional] is the version number of the GLAS_HDF.

OUT_MET=filename start
stop [release] [version]

First argument designates the path and name of the output MET file. The
second and third arguments are the start of the data time period for which
the MET file is valid. These times may be expressed as CCSDS-A UTC or
gps_seconds. In practice, this time should be the GLAS_HDF granule
start/stop time. Release [optional] is the release number of the
GLAS_HDF. Version [optional] is the version number of the GLAS_HDF.

All instances of glaxx_h5_convert share the same control file structure/information
Execution instructions for the detached metadata creation process are contained within a
control file. The control file contains all the control information needed for the process.
Example content includes input/output file specification and PGE-specific processing
instructions. The control file format/content is defined in the detailed design section of
glah_meta PGE.

6.4.3 Process Initiation

The process is invoked by running the glah_meta PGE with a valid control file as the sole
command-line argument.
Example :
glah_meta cf_20100305_19394.ctl

6.4.4 Error Detection Recovery

Error/status messages are displayed on stdout. Any errors should be reported to the
software development team for analysis. Upon software termination, a result code is
returned to the parent shell. 0 indicates successful execution; non-zero indicates a failure.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-1

7.0 COMMON_LIBS COMPONENT

The base level of GLAS_HDF software is a collection of core library routines inherited
from GSAS and reused by MABEL. These libraries are coded in a generic manner such
that GLAS_HDF, MABEL, and other development efforts can make use of the library
routines. This design maximizes code reuse and all inherent advantages. Table 7-1 lists
each component of common_libs. Each library component will be detailed in following
sub-sections. Each sub-section will list global variables and subroutines provided by the
library component. When appropriate, important constructs instantiated by the library
component will also be discusses.

Table 7-1 common_lib Libraries

Library Function

const_lib Contains global constants.

err_lib Contains error-related constants. Provides subroutines for standardized error handling and a
routine to override error parameters via control.

mutil_lib Contains subroutines that provide utility functions such as text processing, HTML
generation, keyword/value implementation, and file structure definition.

time_lib Contains time-related constants. Provides subroutines that convert between various time
standards (such as GPS, UTC, and Julian).

math_lib Contains subroutines that provide standard mathematical functions (such as statistics
generation and interpolation).

cntl_lib Contains subroutines for parsing control information.

anc_lib Contains subroutines for accessing ancillary data files (such as DEMs and ESDTs).

hdf_lib Contains subroutines that provide an interface to the HDF5_LIBRARY for handling
GLAS_HDF-like HDF5 files in a standardized manner.

7.1 const_lib

const_lib contains a single Fortran module and provides global constants and a routine to
initialize selected global constants. const_lib is a direct-reuse of MABEL/GSAS code
with GLAS-specific parameters removed.

7.1.1 Globals

Selected global constants are listed in Table 7-2 (not all constants provided are directly
relevant to GLAS_HDF).

Table 7-2 const_lib Globals

Module Variable Description

const_glob_mod MAXKEY Keyword maximum length

const_glob_mod MAXSTR Maximum string length

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-2

Module Variable Description

const_glob_mod MAXLINE Maximum line length

const_glob_mod VERS_LEN Maximum length of version string

const_glob_mod COMMON_LIB_NAME name of common_libs

const_glob_mod COMMON_LIB_VERS version of common_libs

const_glob_mod COMMON_LIB_DATE date of common_libs

const_glob_mod COMMON_LIB_INFO description of common_libs

const_glob_mod I1B_ROLL 1-byte rollover value

const_glob_mod I2B_ROLL 2-byte rollover

const_glob_mod I2B_ROLL_MAX 2-byte maximum value

const_glob_mod I4B_ROLL 4-byte rollover

const_glob_mod INVALID_R8B Invalid value for double precision datatype

const_glob_mod INVALID_R4B Invalid value for real datatype

const_glob_mod INVALID_I4B Invalid value for 4-byte integer

const_glob_mod INVALID_I2B Invalid value for 2-byte integer

const_glob_mod INVALID_I1B Invalid value for 1-byte integer

const_glob_mod gd_PI Value of PI

const_glob_mod gd_C Value for speed of light (m/s)

const_glob_mod g_time_sec Contains the current time. This may be filled with either
system time or data time, depending on implementation.

7.1.2 Subroutines

A single subroutine is provided by const_lib. This subroutine must be called at the start
of any program that uses const_lib and is listed in Table 7-3.

Table 7-3 const_lib Subroutines

Module Subroutine Description

const_glob_mod const_glob_init Initializes PGE information and invalid values.

7.2 err_lib

err_lib contains a single Fortran module, which provides global error codes and
subroutines that perform standardized error and status handling. These routines write
error and status messages in a standard format, control the type of time printed in
error/status messages, and terminate processing if an error is deemed fatal. err_lib is a
direct reuse of MABEL code, which is a simplified version of GSAS error handling.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-3

7.2.1 Globals

Critical global variables are listed in table. Individual error codes are too numerous to list
here. Variables listed with “CONTROL OVERIDE” can be set via control.

Table 7-4 err_lib Globals

Module Variable Description

error_mod GE_NOERROR Indicates no error detected.

error_mod GE_NOTICE Indicates a notice was detected.

error_mod GE_WARNING Indicates a warning was detected.

error_mod GE_FATAL Indicates a fatal error was detected.

error_mod ERRORUNIT Unit where errors are written.
CONTROL OVERRIDE

error_mod STATUSUNIT Unit where status messages are written.
CONTROL OVERRIDE

error_mod g_use_datatime Flag to indicate if system or data time will be printed.

error_mod STATUSLEVEL Bitflag indicating the level of status messages to write.
CONTROL OVERRIDE

7.2.2 Subroutines

err_lib subroutines are listed in Table 7-5.
Table 7-5 err_lib Subroutines

Module Subroutine Description

error_mod check_error Checks error code. Writes error message if detected. Exits program
if required.

error_mod status Writes status message.

error_mod print_start_banner Writes PGE information at start of execution.

error_mod print_end_banner Writes processing information at end of execution.

7.3 mutil_lib

mutil contains several Fortran modules that provide subroutines that perform a variety of
utility functions. These functions include text processing, keyword/value implementation,
and file structure handling. mutil_lib is a direct reuse of MABEL code that is improved
version of GSAS code.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-4

7.3.1 Globals

mutil_lib global variables are listed in Table 7-6. Individual error codes are too
numerous to list here. Variables listed with “CONTROL OVERIDE” can be set via
control.

Table 7-6 mutil_lib Globals

Module Variable Description

fstruct_mod fstruct_type File structure (fstruct) type definition. An fstruct structure contains
a variety of information related to a file.

keyval_mod keyval_type Keyword/Value (keyval) type definition. A keyval structure
contains a keyword and value pair. This forms the basis of control
file and metadata constructs.

7.3.2 Subroutines

mutil_lib subroutines are listed in Table 7-7.
Table 7-7 mutil_lib Subroutines

Module Subroutine Description

fstruct_mod init_fstruct Initializes an fstruct variable.

fstruct_mod print_fstruct Prints components of an fstruct variable.

fstruct_mod get_filepath Splits a file specification into path and filename.

fstruct_mod cat_filepath Concatenates a path and filename.

html_mod write_css Writes the embedded CSS structure used within an HTML data
dictionary.

keyval_mod init_keyval Initializes a keyval variable

keyval_mod parse_keyval Parses a keyval from a text string.

keyval_mod print_keyval Prints components of a keyval.

keyval_mod find_key Finds the specified keyword within a keyval list.

keyval_mod find_kval Finds the specified value within a keyval list.

keyval_mod count_keys Counts the number of specified keys within a keyval list.

keyval_mod count_kvals Counts the number of specified values within a keyval list.

textutil_mod readline Read a line of text from a file, skipping empty lines and comments.

textutil_mod compare_str Compares two strings (case and whitespace insensitive).

textutil_mod single_line Returns 80 -

textutil_mod double_line Returns 80 =

textutil_mod is_digit Verifies character is a digit.

textutil_mod strsplit Splits a string via given delimiter.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-5

Module Subroutine Description

textutil_mod count_fields Counts number of strings separated by a given delimiter.

textutil_mod empty_string Returns TRUE if a string contains only whitespace.

textutil_mod strip_str Returns portion of a string up to the first control character.
(Useful for handling HDF5 C-style strings).

textutil_mod text2upper Converts text to upper case.

textutil_mod text2lower Converts text to lower case.

textutil_mod strreplace Replace all occurrences of a substring within a string.

textutil_mod find_str Finds a string with list of strings.

7.4 time_lib

time_lib contains several Fortran modules that provide subroutines that perform a handle
time conversion and time processing functions. time_lib is a direct reuse of MABEL code
that was ported from the HDF-EOS MDT toolkit (MTDTK5.2.14v1.00).

7.4.1 TAI-UTC Ancillary File

time_lib requires a TAI-UTC ancillary file as input. This file contains leap second
information and can be retrieved from the following URL:
ftp://maia.usno.navy.mil/ser7/tai-utc.dat

Updated TAI-UTC files are suggested periodically and required if a leap second has
passed since the last update.

7.4.2 Globals

time_lib global variables are listed in Table 7-8.
Table 7-8 time_lib Globals

Module Variable Description

const_time_mod GPS_TO_TAI93 Difference between GPS and TAI epochs (1980-01-06 to
1993-01-01).

const_time_mod JD_EPOCH_DAY TAI Julian day of 0 hrs UTC 1-1-93 (whole).

const_time_mod JD_EPOCH_FRACTION TAI Julian day of 0 hrs UTC 1-1-93 (fractional).

const_time_mod JD_1961JAN1 Leap Second-relevant JD.

const_time_mod JD_1972JAN1 Leap Second-relevant JD.

const_time_mod MJD_OFFSET MJD / Julian Date Offset.

const_time_mod SEC_PER_WEEK Seconds in a nominal week.

const_time_mod SEC_PER_DAY Seconds in a nominal day.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-6

Module Variable Description

const_time_mod SEC_PER_HOUR Seconds in a nominal hour.

const_time_mod SEC_PER_MINUTE Seconds in a nominal minute.

const_time_mod CCSDS_A_IN_FMT Format for CCSDS-A timecode (input).
YYYY-MM-DDThh:mm:ss.ddddddZ

const_time_mod CCSDS_A_FMT Format for CCSDS-A timecode (output).
YYYY-MM-DDThh:mm:ss.ddddddZ

const_time_mod CCSDS_F_FMT Format for CCSDS-A filename segment.
YYYY-MM-DDThhmmss

const_time_mod CCSDS_B_IN_FMT Format for CCSDS-B timecode (input).
YYY-DDDThh:mm:ss.ddddddZ

const_time_mod CCSDS_B_FMT Format for CCSDS-B timecode (output).
YYY-DDDThh:mm:ss.ddddddZ

const_time_mod EOM_DAY Day number at the end of each month.

const_time_mod MONTH_DAYS Max days in each month

const_time_mod LEAP_OK Leap Second Status Flags

const_time_mod LEAP_SEC_IGNORED Leap Second Status Flags

const_time_mod NO_LEAP_SECS Leap Second Status Flags

const_time_mod ZERO_LEAP_SEC Leap Second Status Flags

leapsec_mod g_taiutc TAI-UTC ancillary data read into core.

leapsec_mod fs_in_taiutc fstruct for TAI-UTC ancillary file.

7.4.3 Subroutines

time_lib subroutines are listed in Table 7-9.
Table 7-9 time_lib Subroutines

Module Subroutine Description

leapsec_mod read_taiutc Reads the TAI-UTC file into a global data structure.

leapsec_mod get_leapsec Returns the number of leap seconds for a given JD.

leapsec_mod print_taiutc Prints the TAI-UTC data structure.

leapsec_mod find_taiutc Sets the filename and path of the ancillary TAI-UTC file.

leapsec_mod parse_taiutc_cntl Parses taiutc-related info from the control file.

parse_ccsds_mod parse_ccsds Initializes a keyval variable.

timeconv_mod utc_ccsa_to_ccsb Converts UTC Time in CCSDS ASCII Time Code A to CCSDS
ASCII Time Code B.

timeconv_mod utc_ccsa_to_file Converts UTC Time in CCSDS ASCII Time Code A to
compressed filename time code.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-7

Module Subroutine Description

timeconv_mod utc_ccsb_to_ccsa Converts UTC Time in CCSDS ASCII Time Code B to CCSDS
ASCII Time Code A

timeconv_mod jday_to_calday Converts from integer Julian Day to Calendar Day.

timeconv_mod gps_s_to_utc_a Converts from GPS seconds to UTC ASCII.

timeconv_mod calday_to_jday Converts from Calendar day to integer Julian Day.

timeconv_mod jd_to_jdsplit Converts Julian Date to Toolkit Julian Date Format.

timeconv_mod mjd_to_jd Converts Modified Julian Date To Julian Date.

timeconv_mod jd_to_mjd Converts from Julian Date to Modified Julian Date.

timeconv_mod tai93_jd_to_tai93_s Converts TAI Julian date to time in TAI seconds since 12 AM
UTC 1-1-1993. TAI93 is internal toolkit time.

timeconv_mod tai93_jd_to_utc_jd Converts from TAI93 JD to UTC JD.

timeconv_mod tai93_s_to_tai93_jd Converts from TAI93 seconds to TAI93 JD.

timeconv_mod tai93_s_to_utc_a Converts from TAI93 seconds to UTC ASCII (CCSDS-A)

timeconv_mod tai93_s_to_utc_jd Converts from UTC JD to UTC ASCII.

timeconv_mod utc_jd_to_tai93_jd Converts UTC as a Julian date to TAI as a Julian date.

timeconv_mod utc_jd_to_utc_a Converts from UTC JD to UTC CCSDS ASCII.

timeconv_mod utc_a_to_gps_s Converts from UTC CCSDS ASCII to GPS seconds.

timeconv_mod utc_a_to_tai93_s Converts from UTC CCSDS ASCII to TAI93 seconds.

timeconv_mod utc_a_to_tai93_jd Converts from UTC CCSDS ASCII to TAI93 JD.

timeconv_mod utc_a_to_utc_jd Converts from UTC CCSDS ASCII to UTC JD.

timeconv_mod gps_s_to_utc_s Converts from GPS seconds to UTC J2000 seconds.

timeconv_mod utc_s_to_utc_a Converts from UTC seconds to UTC ASCII.

timeconv_mod mmddyy_to_utca Converts from MM-DD-YY to UTC ASCII.

timenow_mod timenow Returns the system time in CCSDS-A Format.

7.5 math_lib

math_lib contains several Fortran modules that implement mathematical routines.
math_lib is a direct reuse of MABEL/GSAS code, with the addition of a polynomial
interpolation routine coded for GLAS_HDF.

7.5.1 Globals

math_lib global variables are listed in Table 7-10.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-8

Table 7-10 math_lib Globals

Module Variable Description

onepass_avg_mod onePass_accumulate_TYPE Statistical type definition. Provides data structure to
perform one-pass statistical analysis.

7.5.2 Subroutines

math_lib subroutines are listed in Table 7-11.
Table 7-11 math_lib Subroutines

Module Subroutine Description

bilin_interp_mod bilin_interp This subroutine calculates the value of properties at a point
by doing a bilinear interpolation of the 4 points straddling it.

linearreg_mod linearreg Performs linear regression on input array. Returns statistics.

median_mod print_start_banner Returns median of a double precision array.

onepass_avg_mod Onepass_Assign Assigns elements of one onePass_accumulate_TYPE to
another

onepass_avg_mod Onepass_Init onePass_accumulate_TYPE

onepass_avg_mod onePass_Accumulate Accumulates data for onePass_accumulate_TYPE

onepass_avg_mod onePass_Compute Computes the min, mean, max and standard deviation for
onePass_accumulate_TYPE

onepass_avg_mod Onepass_Print Prints onePass_accumulate_TYPE

7.6 cntl_lib

cntl_lib contains several Fortran modules that handle control file processing. cntl_lib is a
direct reuse of MABEL/GSAS code.

7.6.1 Control Files

Control files provide dynamic control information to PGEs. Most PGEs are designed to
take the name of the control file as a command-line argument during each invocation of
the PGE. Most PGEs should terminate with a fatal error if the command-line argument is
missing, the specified file does not exist, or the file is unreadable.

Control files are designed to be part of a larger control file used by one or more PGEs. The
larger control file includes sections that identify the PGE that will perform the task requiring
the inputs contained in the section. Each section is bounded by an "=" sign in column 1,
followed by the PGE name that requires the control inputs.

All control files are created in standard “keyword=value” format. This format is text-based
and consists of a line containing a keyword/value pair delimited by an equal sign (=). The
ordering of the keywords is not relevant but should follow a convention for consistency.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-9

Multiple instances of certain keywords are allowed. The keyword is not case sensitive.
Spaces are allowed, but not required. Comment lines must be prepended by a “#” character.
The keyword is limited to MAXSTR characters; the value is limited to MAXLINE characters.

Control file examples and allowable values are defined in the detailed design section for
each GLAS_HDF PGE.

7.6.2 Subroutines

cntl_lib subroutines are listed in Table 7-11.
Table 7-12 math_lib Subroutines

Module Subroutine Description

cntl_mod get_secstart Positions file pointer to start of the section with a control file.

cntl_mod open_cf Opens the control file for reading.

cntl_mod read_cf Reads the control file into a keyval structure.

cntl_mod close_cf Closes the control file.

cntl_mod print_cf Prints the control file.

cntl_mod check_cntl Checks control to see if there are unused control lines.

filecntl_mod parse_filecntl Parses control structures for input/output files.

filecntl_mod parse_fileinfo Parses file control structures for file parameters.

filecntl_mod read_filendx Reads a file index (control-style list of files).

globcntl_mod parse_globcntl Parses control settings for common_lib routines.

globcntl_mod parse_err_cntl Parses error-related info from the control file.

7.7 anc_lib

anc_lib contains several Fortran modules that handle ancillary data files. anc_lib is a
direct reuse of MABEL/GSAS code. Since none of the anc_lib code is used in
GLAS_HDF, the library will not be documented here.

7.8 hdf_lib

hdf_lib contains several Fortran modules that provide an interface to the
HDF5_LIBRARY for handling HDF5 files in the MABEL/GLAS_HDF style. hdf_lib
was created for MABEL and has been improved by the GLAS_HDF effort. These
improvements will be rolled back into the MABEL codebase.
hdf_lib provides routines that implement conventions of the GLAS_HDF file format. The
constructs that implement these conventions map directly to several GLAS_HDF
requirements and include:

• Parameters implemented as HDF5 chunked/compressed datasets.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-10

• CF parameter attributes

• CF global attributes

• Descriptive labeling
h5_param_mod and h5_param2_mod are two nearly identical module implementations.
The only difference is that h5_param_mod handles parameters of rank=1 whereas
h5_param_mod handles parameters of rank=2. As such, only h5_param_mod routines
will be documented.

hdf_lib also contains the h5_codegen_module. This module provides generic routines for
the code generator.

7.8.1 Parameters

Parameters are written to a HDF5 file as chunked/compressed datasets. There are two
major programming components used to instantiate parameters and several subroutines
used to read and write parameters in a consistent manner. hdf_lib currently only provides
support for one and two-dimensional datasets.
h5_param_type1 (and h5_param_type2) are type definitions that contain all the
information to instantiate parameters needed by the HDF5_LIBRARY. These type
definitions contain no actual scientific data values, but contain elements needed to read
and write the scientific data values. Components are described in Table 7-13.

Table 7-13 h5_param_type

Component Description

label HDF5 identifying label

m_dtype HDF5 Data type as represented in memory

f_dtype HDF5 Data type a stored within a HDF5 file.

 did HDF5 dataset id

sid HDF5 dataspace id

pid HDF5 plist id

mid HDF5 memoryspace id

fid HDF5 filespace id

rank Rank of data.

gid HDF5 group ID were the parameter would be read/written.

start Start position in the data array for read/write.

size Total number of elements read/written.

max_dims Total size of data array on disk.

dims Size of each chunk.

slen Length of string for character data.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-11

Component Description

zip_lvl Zip compression level (for SHUFFLE/GZIP compression)

precision Precision saved to disk (For scale/offset compression – not used in GLAS_HDF)

att Data structure of descriptive attributes that will be attached to the parameter.

7.8.2 CF Parameter Attributes

Each parameter written to a HDF5 file includes attached CF attributes that describe the
parameter and provide information both on the HDF5 file and for the generated data
dictionary.

h5_pattr_type is a type definition that contains elements which instantiate the CF
parameter attributes. Each element is a text string that will be internally converted to an
appropriate datatype (if applicable) when written to the HDF5 file. If an attribute contains
the string “not_set”, the attribute is not written to the HDF5 file. Table 7-14 describes
each element and (if applicable) its corresponding CF attribute name.

Table 7-14 Parameter Attributes

Attribute Description (CF indicates a standard CF attribute.)

name Descriptive name of the parameter. (CF : long name)

standard_name A standard name that references a description of a variable’s content in the standard
name table. (CF : standard_name)

units Units of a variable’s content. (CF : units, compliant with NetCDF UDUNITS)

hertz Data rate of the parameter (occurrences per second).

description Description of the parameter.

source Method of production of the original data. (CF: source)

coordinates Identifies auxiliary coordinate variables, label variables, and alternate coordinate
variables. (CF : coordinates)

valid_min Smallest valid value of a variable. (CF: valid_min)

valid_max Largest valid value of a variable. (CF: valid_max)

flag_values Provides a list of the flag values. Use in conjunction with flag_meanings. (CF :
flag_values)

flag_meanings Use in conjunction with flag_values to provide descriptive words or phrases for each
flag value. If multi-word phrases are used to describe the flag values, then the words
within a phrase should be connected with underscores. (CF : flag_meanings)

fillvalue A value used to represent missing or undefined data. Not allowed for coordinate data
except in the case of auxiliary coordinate variables in discrete sampling geometries.
(CF : _FillValue)

Parameter CF attribute descriptions were copied from :
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/cf-conventions.html.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-12

7.8.3 CF Global Attributes

CF global attributes are the primary source of human-readable metadata on GLAS_HDF
products. The attributes are a subset of relevant EOSDIS ECHO metadata fields merged
with a subset of relevant CF attribute fields. The global attributes are attached to the root
level of the HDF5 file.
h5_file_cf is a global keyval structure that contains elements which instantiate the CF
global attributes. If an attribute contains the string “not_set”, the attribute is not written to
the HDF5 file. Table 7-15 lists the supported CF global attributes.

Table 7-15 CF Global Attributes

Attribute Description

accessconstraints Describes access constrains imposed upon the data by the producer.
(ECHO)

campaign GLAS_HDF specific campaign identifier.

citationforexternalpublication Describes the citation required when citing the data in a formal
publication. (ECHO)

comment Miscellaneous information about the data that cannot be described in
any of the other available attributes. (CF)

contributor_name The name of any individuals or institutions that contributed to the
creation of this data. Listed contributors must be comma separated and
same order as listed in the contributor_role attribute. (CF)

contributor_role The role of the individual or institution that contributed to the creation
of this data. Listed roles must be comma separated and in the same
order as listed in the contributor_name attribute. (CF)

Conventions States that the CF convention is being used and what version. (CF)

creator_email Email address of the person/organization that created the data. (CF)

creator_name Name of the person/organization who created the data. (CF)

date_created The date or date and time when the file was created. (CF)

date_type Time epoch under which timestamps are represented (ECHO).

featureType A featureType describes the fundamental relationships among the
spatiotemporal coordinates (CF).

geospatial_lat_max Maximum latitude coordinates of the bounding box of the data set. (CF)

geospatial_lat_min Minimum latitude coordinates of the bounding box of the data set. (CF)

geospatial_lat_units Defines the units applied to the geospatial_lat_min and
geospatial_lat_max attributes. (CF)

geospatial_lon_max Maximum longitude coordinates of the bounding box of the data set.
(CF)

geospatial_lon_min Minimum longitude coordinates of the bounding box of the data set.
(CF)

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-13

Attribute Description

geospatial_lon_units Defines the units applied to the geospatial_lon_min and
geospatial_lon_max attributes. (CF)

hdfversion Version of HDF5_LIBRARY used to product the data.

history List of any changes made to the file. (CF)

identifier_file_uuid Machine readable unique identifier for each file. (ECHO)

identifier_product_doi Machine readable digital object identifier (DOI) for each product type.
(ECHO)

identifier_product_doi_authority Authority where values for indentifier_product_DOI are registered.
(ECHO)

institution The institution of the person or group that collected the data.

instrument Name of the instrument that was used in the collection of the data. (CF)

keywords A comma separated list of Global Change Master Directory (GCMD)
key words and phrases. (CF/ECHO)

keywords_vocabulary Identifies the controlled list of keywords from which the values in the
"keywords" attribute are taken. (CF)

license Describes the restrictions to data access and distribution. (CF)

platform Name of the platform that was used in the collection of the data. (CF)

processing_level EOSDIS identifier describing the processing level of the data
(CF/ECHO)

project The scientific project that the data was collected under. (CF)

publisher_email The email address of the person/organization that distributes the data
files. (CF)

publisher_name Name of the person/organization that distributes the data files. (CF)

publisher_url URL of the person/organization that distributes the data files. (CF)

references Contains published or web-based references that describe the data or
methods used to produce it.

shortname EOSDIS identifier indicating product type. (ECHO)

source The method of production of the original data. (CF)

spatial_coverage_type Spatial coverage type of the data. (ECHO)

standard_vocabulary_name The name of the controlled vocabulary from which variable standard
names are taken. (CF)

summary One paragraph describing the data set. (CF)

time_coverage_duration Describes the temporal coverage duration of the data (CF).

time_coverage_end Describes the temporal coverage end of the data (CF).

time_coverage_start Describes the temporal coverage start of the data (CF).

time_type Time standard under which timestamps are represented (ECHO).

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-14

Attribute Description

title Short description of the data contained within the file. (CF)

Some CF Global attribute descriptions were copied from :
http://www.nodc.noaa.gov/data/formats/netcdf/#guidencetable

7.8.4 Descriptive Labeling

The descriptive labeling requirement is mostly fulfilled by the CF parameter and global
attributes conventions. The unmet implied requirement remaining is to provide a
description for each HDF5 group created. The h5_create_group subroutine requires a
description as an argument when creating a new group.

7.8.5 Globals

hdf_lib global variables are listed in Table 7-10.
Table 7-16 hdf_lib Globals

Module Variable Description

cf_attr_mod h5_file_cf Keyval list of cf-style metadata attributes that will be
attached to the root level.

h5_param_mod h5_param_type1 h5_param type definition. The h5_param structure
contains all required HDF5 internal information about
a parameter.

7.8.6 Subroutines

hdf_lib subroutines are listed in Table 7-11.
Table 7-17 hdf_lib Subroutines

Module Subroutine Description

cf_attr_mod h5_write_file_cf Attaches the list of h5_file_cf attributes to the root group of
a HDF5 file.

cf_attr_mod h5_read_file_cf Reads h5_file_cf attributes from the root group of a HDF5
file.

cf_attr_mod write_file_cf_data_dict Writes h5_file_cf attributes in HTML-based data dictionary
format.

h5_attr_mod h5_write_pattr Attaches a set of CF-style parameter attributes to a HDF5
parameter.

h5_attr_mod h5_read_pattr Reads CF parameter attributes from a HDF5 parameter.

h5_attr_mod h5_init_pattr Initializes a set of CF parameter attributes.

h5_attr_mod h5_print_pattr Prints CF parameter attributes in HTML-based data

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-15

Module Subroutine Description

dictionary format.

h5_attr_mod h5_print_pattr_head Prints a header for CF parameter attributes in HTML-based
data dictionary format.

h5_attr_mod h5_set_r8_attr Sets CF min/max/fill values for an r8 parameter.

h5_attr_mod h5_set_r4_attr Sets CF min/max/fill values for an r4 parameter.

h5_attr_mod h5_set_i4_attr Sets CF min/max/fill values for an i4 parameter.

h5_codegen_mod write_module_start Writes code for the module start & typedefs.

h5_codegen_mod write_init Write code for the init routine.

h5_codegen_mod write_alloc Writes code for the alloc/dealloc routines.

h5_codegen_mod write_open Writes code for the group open routine.

h5_codegen_mod write_close Writes code for the group close routine.

h5_codegen_mod write_h5init Writes code for the group H5 init routine.

h5_codegen_mod write_create Writes code for the group create routine.

h5_codegen_mod write_read Writes code for the group read routine.

h5_codegen_mod write_write Writes code for the group write routine.

h5_codegen_mod write_print_attr Writes code for the attributes print routine.

h5_codegen_mod write_print_head Writes code for the header print routine.

h5_codegen_mod write_print_data Writes code for the data print routine.

h5_codegen_mod write_data_dict Writes code for the data dictionary routine

h5_codegen_mod write_sync Writes code for the data sync routine.

h5_codegen_mod write_setds Writes code for the dimension scale routine.

h5_codegen_mod write_end Writes code for the module end.

h5_file_mod openr_h5_file Opens a HDF5 file for input.

h5_file_mod openw_h5_file Creates a HDF5 file for output.

h5_file_mod close_h5_file Closes a HDF5 file.

h5_group_mod h5_create_group Creates a HDF5 group with a description attribute and
custom property list settings.

h5_param_mod h5_create_param Creates a parameter as a chunked dataset; writes parameter
attributes.

h5_param_mod h5_open_param Opens a parameter as a chunked dataset; reads parameters
attributes.

h5_param_mod h5_close_param Closes constructs associated with a parameter chunked
dataset.

h5_param_mod h5_extend_param Extends a dataset for writing a parameter as a chunked
dataset.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-16

Module Subroutine Description

h5_param_mod h5_select_chunk Selects a hyperslab for reading a parameter as a chunked
dataset.

h5_param_mod h5_read_i_param Reads a parameter as an integer chunked dataset.

h5_param_mod h5_read_f_param Reads a parameter as a floating-point chunked dataset.

h5_param_mod h5_read_d_param Reads a parameter as a double precision chunked dataset.

h5_param_mod h5_read_s_param Reads a parameter as a string chunked dataset.

h5_param_mod h5_write_i_param Writes a parameter as an integer chunked dataset.

h5_param_mod h5_write_f_param Writes a parameter as a floating-point chunked dataset.

h5_param_mod h5_write_d_param Writes a parameter as a double precision chunked dataset.

h5_param_mod h5_write_s_param Writes a parameter as a string chunked dataset.

h5_param_mod h5_init_param Initializes a parameter as a chunked dataset.

h5_param_mod h5_print_pinfo Prints parameter information in data-dictionary style HTML
format.

h5_param_mod h5_print_pinfo_head Prints a header for parameter information in data-dictionary
style HTML format.

h5_param_mod h5_print_pinfo_end Prints HTML to close a table created by
h5_print_pinfo_head.

h5_param_mod h5_quickinit_param Initializes a parameter using passed arguments.

7.9 Dependencies

Library code is implemented in separate directories and grouped by functional area. A
single Makefile in each library subdirectory will compile the subdirectory source code
into a statically-linked library. A cascading Makefile at the top level of the common_libs
source tree will compile all the libraries in one step.

A hierarchy of dependencies exist between the libraries. The order in which libraries are
compiled (and linked) is important since libraries may depend upon other libraries for
support routines. This is not an issue if the developer uses the supplied Makefile
infrastructure, but the developer should be aware that these dependencies exist. The
dependency structure is illustrated in Table 7-18.

Table 7-18 common_lib Libraries and Dependencies

To build... The following libraries are required...

const_lib <none>

err_lib const_lib

mutil_lib const_lib, err_lib

time_lib const_lib, mutil_lib

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7-17

math_lib const_lib, err_lib

cntl_lib const_lib, err_lib, mutil_lib

anc_lib mutil_lib, math_lib

hdf_lib const_lib, err_lib, HDF5_LIBRARY

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

8-1

8.0 GSAS_LIB/GLASHDF_LIB IMPLEMENTATION NOTE

Whereas the GLAS_HDF architecture and design documentation represents gsas_lib and
glashdf_lib as two separate entities, they have been implemented in a single static library.
This decision was made because the only unique functionality provided within gsas_lib is
implemented within a two modules that handle the GLAS_HDF-specific implementation
of metadata.

Additionally, the product-specific routines discussed within gsas_lib documentation have
been implemented as subroutines directly callable within each product-specific PGE.
This decision was made to enable the team to deliver individual product-conversion
PGEs without having to re-deliver the static libraries.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

9-1

9.0 GSAS_LIB

gsas_lib is a collection of GSAS routines re-used to read the GLAS_BIN products.
Primary functions provided by these routines include:

• Reading GLAS_BIN product headers (metadata)

• Reading and converting GLAS_BIN data into scientific units

• Unpacking GLAS_BIN bit flags

• Handling GLAS_BIN QA data

• Handling GLAS_BIN PASSID/NOSE information

• Writing MET detached metadata files.

9.1 Support Modules

Routines within this library that are non-product-specific are GSAS legacy support
routines required by the product-specific routines. Functionality provided by each support
module is listed in Table 9-1. Due to their limited usefulness, individual subroutines are
not documented here.

Table 9-1 GSAS_LIB Support Modules

Module Description

MetaQA_mod Parses QA metadata information passed via control

WriteMetaFile_mod Writes metadata information to a detached metadata (MET) file in ESDIS-
compliant ECHO format.

anc45_meta_mod (required only for support)

c_compare_mod (required only for support)

c_nose_mod Handles NOSE information required within detached metadata files.

common_flags_mod Contains routines for packing/unpacking flags that appear in multiple GLAS_BIN
products.

common_hdr_mod Provides data structures and routines for manipulating GLAS_BIN product
headers.

const_gsas_mod Provides GSAS-specific constants.

conversions_mod Provides generic datatype conversions.

get_numhdrs_mod Returns the number of header records within any GLAS_BIN product.

kinds_mod Provides GSAS data type definitions.

passid_mod Handles passid information passed by control and required for NOSE support.

prod_def_mod Defines the record sizes of each GLAS_BIN product.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

9-2

9.2 Product-Specific Modules

Product-specific modules constitute an API for each GLAS_BIN product type. These
modules were designed and implemented to provide a standard set of functions for
manipulating each product type. It will be sufficient to abstractly describe a model API
designated as “glaxx”.
The GLAS_BIN APIs are instantiated as a set of at most six modules. If a product
contains no product-specific flags, the flag module (glaxx_flags_mod) does not exist. If a
product contains no product-specific metadata, the header module (glaxx_hdr_mod) does
not exit. The primary use of the GLAS_BIN API within GLAS_HDF is to read the
product records and convert the integer product variables into scientific units.

Table 9-2 Product-Specific Modules

Module Description

glaxx_prod_mod Defines product-specific record format and associated global product data structure.
Each module also includes one subroutine to initialize the product data and another to
print the data in a human-readable form.

glaxx_hdr_mod Contains routines to read and write product-specific metadata information.

glaxx_alg_mod Defines product-specific global algorithm (scientific units) data structure. Each module
also includes one subroutine to initialize the algorithm data and another to print the
data in a human-readable form

glaxx_scal_mod Defines product-specific global scaling data structure. Also includes subroutines to
initialize the scaling data, convert from product to algorithm format (GLAxx_P2A),
convert from algorithm to product format (GLAxx_A2P), and print the scaling data in
a human-readable form.

glaxx_flag_mod Contains routines for packing/unpacking product-specific flags.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

10-1

10.0 GLASHDF_LIB COMPONENT

glashdf_lib contains functionality that is specific to the GLAS_HDF effort. Since most of
this GLAS_HDF functionality existed within the reused common_libs and gsas_lib,
glashdf_lib provides only functions for handling GLAS_HDF metadata.

10.1 GLAS_HDF Metadata

 GLAS_HDF metadata is derived from a combination of ECHO-style inventory-level
metadata present within GLAS_BIN product headers, collection and inventory-level
metadata provided by ECS-generated ESDT descriptor files, information provided via
control, and some additional metadata created on the fly. The input metadata is merged
into a global metadata construct that used to fill four distinct flavors of metadata on the
GLAS_HDF product: ancillary_data, provenance metadata, grouped metadata and global
metadata.

Global metadata is implemented as attributes attached to the root level of the
GLAS_HDF file. Provenance metadata contains information about the processing
history of the GLAS_HDF file. Most of the metadata contained within the GLAS_BIN
product headers is also contained with the ESDT file. Any metadata item within the
GLAS_BIN headers that is also present within the ESDT file is written as grouped
metadata on the product. However, some GLAS_BIN products do contain metadata that
is not within the ESDT file. In this case, those metadata are written to the ancillary_data
group on the product.

The GLAS_HDF metadata flow is shown in Figure 10-1.

10.1.1 Global Metadata

GLAS_HDF global metadata routines are instantiated by common_libs/hdf_lib. The
routines within glashdf_lib simply copy appropriate values contained with the merged
metadata structure to the h5_file_cf structure. Routines within hdf_lib are called to write
the metadata to the product. Please refer to the hdf_lib section for detailed information
regarding global metadata.

10.1.2 Grouped Metadata

Grouped Metadata contains the filled content of the EOSDIS ESDT Metadata
Configuration File (MCF). The MCF describes metadata values that will be ingested into
the ECS databases. In order to store the MCF information as attributes attached to HDF5
groups attributes, some reorganization and re-labeling was necessary. However, all of
the information described within the MCF file is present within the grouped metadata.
The benefit of the grouped metadata is that it is easily computer-parseable and enables
the mechanism by which .MET metadata ingest files are created for the EOSDIS
datacenter.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

10-2

Figure 10-1 GLAS_HDF Metadata Flow

10.1.3 ancillary_data

The ancillary_data group contains metadata information present on certain GLAS_BIN
product types that is not also present in the ESDTs. This is also the place where any
additional metadata or ancillary information can be stored.

10.1.4 Provenance Metadata

The process that converts GLAS_HDF data from an integer-binary format into HDF5 is
transformative. However, there is a requirement to keep provenance information

ESDT

GLAS_BIN Control

update_glah_cf_meta

global
metadata

Processing Info

init_glah_meta

grouped
metadata

Collection and Inventory
level ECHO Metadata

Product Metadata Control Metadata

Processing Metadata

merged initial metadata

Processing Metadata

global attributes

yes

Metadata
within ESDT?

merged metadata

ancillary_data

no

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

10-3

regarding the process that created the original GLAS_BIN file since that contains
important traceability information.

Without a conclusive existing standard to define provenance, the GLAS_HDF
provenance implementation is focused on instrumenting the product with the information
necessary to generate a provenance map via external software. The goal was to provide
enough information, in an identifiable fashion, that external software can generate a
provenance map in the format of its choosing.
Provenance metadata is stored on the products within a provenance group as a series of
numbered step groups representing a step in the processing history.
Example step group: /METADATA/PROVENANCE/STEP_1

Each step group contains the following attributes:

Attribute Description

ProcessDateTime Date/time of processing step completion.

ProcessAgent /Name Name of processing software.

ProcessAgent /Type Type of processing software.

ProcessAgent /Version Version of processing software.

ProcessAgent /Description Description of processing performed.

ProcessInput /Name Comma-separated list of processing input files.

ProcessInput/Type Comma-separated list of processing input file types. (same order above)

ProcessInput /Version Comma-separated list of processing input file versions. (same order above)

ProcessOutput /Name Comma-separated list of processing output files.

ProcessOutput /Type Comma-separated list of processing output file types. (same order above)

ProcessOutput /Version Comma-separated list of processing output file versions. (same order above)

ProcessOutput /UUID Comma-separated list of processing output file UUIDs. (same order above)

ProcessOutput /DOI Comma-separated list of processing output file DOIs. (same order above)

In addition, GLAS_HDF was part of an EOSDIS pilot project to instrument earth science
granules with DOIs (digital object identifiers). Each GLAS_HDF product type has a
unique DOI registered with the International DOI Foundation (http://www.doi.org). A
DOI can be used, for example, to uniquely identify each datatype cited in a research
paper.

Expanding upon the EOSDIS DOIs, each GLAS_HDF granule will also been assigned a
Universally Unique Identifier (UUID) that can be used to uniquely identify each
individual GLAS_HDF granule.
The DOI and DOI authority values are contained within the ESDT files. The UUID is
passed via control. All values are stored in both the global metadata and grouped
metadata structures.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

10-4

10.1.5 Globals

Selected glashdf_lib global variables are listed in Table 10-1. Other global variables
contain names of metadata fields and control keywords. These are too numerous to
document here.

Table 10-1 glashdf_lib Globals

Module Variable Description

glah_meta_mod esdt_label Parsed ESDT labels

glah_meta_mod esdt_param Parsed ESDT parameter

glah_meta_mod glas_meta Metadata from GLAS Headers

glah_meta_mod glah_label Merged metadata labels

glah_meta_mod glah_param Merged metadata parameters

10.1.6 Subroutines

glashdf_lib subroutines are listed in Table 10-2 .
Table 10-2 glashdf_lib Subroutines

Module Subroutine Description

glah_meta_mod fix_container Replaces ESDT containers with the name of their content.

glah_meta_mod parse_meta_cntl Parses ESDT and metadata-related info from control.

glah_meta_mod parse_esdt_meta Parses metadata structures from the ESDT file

glah_meta_mod init_glah_meta Merges metadata from the ESDTS, GLAS headers, and
additional metadata. It builds a combined set of metadata
paths and values.

glah_meta_mod update_glah_cf_meta Copies selected structured metadata values to CF global
attributes.

glah_meta_mod write_inv_meta_at This routine writes metadata as an HDF5 attribute.

glah_meta_mod h5_write_glah_meta Writes global and grouped metadata to a HDF5 file.

glah_meta_mod h5_close_glah_meta This routine closes any open metadata groups.

glah_meta_mod print_glah_meta_dd Prints all metadata in a HTML data dictionary format.

glah_meta_mod print_glah_meta_group Prints a metadata group in HTML data dictionary format.

glah_meta_mod count_glah_meta Counts the number of attributes in a Metadata group

glah_meta_mod read_glah_meta Reads HDF5 Metadata.

parse_gla_meta_
mod

parse_gla_meta Parses metadata from GLAS headers

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

11-1

11.0 GLAHXX_API COMPONENT

The interface to each GLAS_HDF product is implemented as product-specific Fortran
modules that contain the routines necessary to read, write and document each product.
The API makes extensive use of functionality provided by common_lib, especially
hdf_lib. glah_codegen creates the majority of the functionality implemented by the API
within its generated code.

11.1 Rate Groups

Since GLAS data are multi-rate (i.e.: some 40Hz, some 1Hz, etc.), the GLAS_HDF
products incorporate “rate groups”. Rate groups are top-level groups labeled with a data
rate containing all parameters of that particular data rate. Each rate group has a time
parameter and corresponding latitude/longitude that correspond in a 1-to-1 fashion with
other data parameters within that rate group. Each rate group has a description that
provides information about the group.
As written by the gla_codegen PGE, there is a separate routine to handle each rate-group
(groups of parameters with the same data rate) on the product. Each rate group module
contains a science data structure defining the actual science data content of the rate-
group, a corresponding structure consisting of h5_param_type substructures that contain
corresponding HDF5 parameter information, and an allocable array of science data
structures.
The input/output routines are designed to read/write chunked datasets. However, in
practice, it is faster to read and write whole datasets. The capability to chunk datasets is
still required for gzip compression, but the API hides chunking complexity from a user of
the routines.
In the following examples and in the global and subroutine sections, “rg” will be used as
an example rate group identifier.
To write a rate group named “rg”, subroutines should be called in this order:
call h5_create_glahxx_rg
call h5_write_ glahxx_rg _chunk
call h5_set_ glahxx_rg_ds
call h5_close_ glahxx_rg

To read a rate group named “rg”, subroutines should be called in this order:
call h5_open_ glahxx_rg
call h5_read_ glahxx_rg _chunk
call h5_close_ glahxx_rg

Note that the glahxx_api routines are not required to read data from a GLAS_HDF file.
In many cases, especially when a programmer only wants to read one or a few
parameters, it is just as easy to use the H5LT (HDF5 Lite) API provided with the
HDF5_LIBRARY.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

11-2

11.2 Logical Groups

GLAS products have lots of parameters. There are 15 GLAS products containing a total
of over 2000 parameters. To bring some order to the parameters, logical groups (within
each rate group) are implemented to organize the data by discipline or topic. Each logical
group has a description that provides information about the group. Logical grouping of
parameters is implemented by glahxx_api.

11.3 Dimension Scales

Dimension scales are the mechanism by which NetCDF associates array dimensions. For
complete NetCDF compliance, a dimension scale is needed for every single or multiple
dimensioned parameter on the product. Multiple parameters may share the same
dimension scale as long as their array lengths are the same (and a shared scale makes
sense).

This means that for every parameter “z(x)”, there must be a dimension scale “y” that has
dimensions equivalent to “z” and has a value corresponding to each element of the z
array. Extending this to two dimensions, for every parameter z(x,y), there must be two
dimensions scales “x” and “y” with number of elements equal to the respective
dimensions of z and containing corresponding values. Additional requirements are that :

• Any parameter identified as a dimension scale must be stored within the same
group or within a higher-level group than any other parameter that references it.

• No dimension scale may contain invalid values (or have a _FillValue attribute
attached).

A single time-based dimension scale is implemented automatically within glahxx_api.
However, since some GLAS_BIN products contain two dimensions, additional
dimension scales must be implemented in order to maintain NetCDF compliance. The
majority of this code is added to the h5_set_glahxx_rg_ds subroutine
The most important part of this process is deciding what the dimension scale should
represent. For example, consider a two-dimension array of backscatter profiles where
samples are taken at regular intervals for entire profile within the atmosphere column.
The first dimension scale is time since the array is time-based. The second dimension
scale corresponds to the range of the sample within the atmosphere column. The second
dimension scale could contain several representations. For example:

• An array of integers with values 1-n representing the “index” to the profile
measurement.

• An array of floating point values representing the top range of each measurement
value for its integration.

• An array of floating point values representing the midpoint of each measurement
value for its integration.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

11-3

Once the representation is determined, the actual coding can begin. In code generated by
gla_codegen, there are example commented code fragments which describe how to
implement a custom dimension scale.
To understand what NetCDF does with this information, ncdump would describe this
parameter as such:
cloud_indicator_flags(DS_utctime, DS_range_window_top)

By convention, all GLAS_HDF dimension scale labels start with “DS_”.

11.4 Globals

glahxx_api global variables are listed in Table 11-1. “rg” will be used as an example rate
group identifier.

Table 11-1 glahxx_api Globals

Module Variable Description

glaxx_rg_mod g_h5_glahxx_rg_chunksize HDF5 chunksize of each HDF5 dataset.

glaxx_rg_mod glaxx_rg_type Type definition defining a structure containing the
science data content.

glaxx_rg_mod g_glahxx_rg Single-instance instantiation of the glaxx_rg_type. (A
“record” in past terminology).

glaxx_rg_mod g_glaxx_rg_buff Allocable array of glaxx_rg_types (A “data buffer” in
past terminology).

glaxx_rg_mod g_glaxx_rg_dim_gid Group ID where dimension scales are stored.

glaxx_rg_mod h5_glaxx_rg_type Type definition that contains HDF group ids for each
logical group and h5_param_type substructures for
each HDF5 dataset.

glaxx_rg_mod g_h5_glahxx_rg Instantiation of h5_glaxx_rg_type.

glaxx_rg_mod h5_glahxx_rg_label_type Type definition defining a structure containing text
labels for each logical group and each dataset.

glaxx_rg_mod g_h5_glahxx_rg_label Instantiation of h5_glahxx_rg_label_type.

glaxx_rg_mod h5_glaxx_rg_group_desc_type Type definition defining a structure containing
descriptive information for each group.

glaxx_rg_mod g_h5_glaxx_rg_group_desc Instantiation of h5_glaxx_rg_group_desc_type.

11.5 Subroutines

glahxx_api subroutines are listed in Table 11-2. “rg” will be used as an example rate
group identifier.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

11-4

Table 11-2 glahxx_api Subroutines

Subroutine Description

init_glahxx_rg Return an initialized glahxx_rg structure.

h5_init_glahxx_rg Initializes the HDF5 data and attributes within the g_h5_glahxx_rg structure
and allocates the g_glaxx_rg_buff buffer.

allocate_glahxx_rg Allocates the g_glaxx_rg_buff buffer.

deallocate_glahxx_rg Deallocates the g_glaxx_rg_buff buffer.

h5_create_glahxx_rg Initializes the rate group for writing – creates the rate group, logical groups,
and HDF5 datasets.

h5_open_glahxx_rg Opens the rate group for reading – opens the rate group, logical groups,
initializes the g_h5_glahxx_rg structure and opens the HDF5 datasets.

h5_close_glahxx_rg Closes the HDF5 datasets, logical groups and the rate group.

h5_read_glahxx_rg_chunk Reads a chunk of science data into the g_glaxx_rg_buff buffer.

h5_write_glahxx_rg_chunk Writes the chunk of data within the g_glaxx_rg_buff buffer to the HDF5 file.

print_glahxx_rg_attr Prints the groups and attributes of a rate group in TAB-delimited text format.

print_glahxx_rg_head Prints headers corresponding to print_glahxx_rg_data output in a TAB-
delimited text format.

print_glahxx_rg_data Prints dataset values in a TAB-delimited text format.

print_glahxx_rg_data_dict Prints the rate group data dictionary in HTML format.

sync_glahxx_rg Returns the buffer index value of data corresponding to a particular time.

h5_set_glahxx_rg_ds Converts datasets to dimension scales and links the dimension scale to other
dataset.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

12-1

12.0 GLAXX_H5_CONVERT COMPONENT

glaxx_h5_convert is the model of a PGE that transforms a GLAS_BIN file into
GLAS_HDF. An instance of this model exists for each GLAS_HDF product type.
glaxx_h5_convert leverages all the software previously described in this document.

gla_codegen creates a significant amount of the code necessary to instantiate
glaxx_h5_convert, but some code must be added by the programmer to handle copying
multi-rate data from the GLAS_BIN to the GLAS_HDF data structure.
gla_codegen consists of two major items: a main Fortran program (glaxx_h5_convert)
and an initialization subroutine (main_init).

12.1 main_init

main_init provides initialization functions for glaxx_h5_convert. The functions include
(in order):

• Read and parse the control file.

• Open and read the requisite TAI-UTC file.

• Parse the control file for control overrides.

• Initialize the GLAS_BIN scale factors.

• Parse file input/out information from the control file.

• Open the input GLAS_BIN file.

• Open and parse the requisite corresponding ESDT file.

• Create the output GLAS_HDF file.

• Initialize the metadata.

• Verify all control file entries were parsed.

Most of this functionality is incorporated within calls to library routines. Figure 12-1
shows this graphically.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

12-2

Figure 12-1 main_init

main_init

end

read_cfControl

parse_taiutc_cntl

read_taiutc

parse_globcntl

parse_err_cntl

glaxx_scal_init

parse_filecntl

parse_meta_cntl

parse_esdt_meta

TAI-UTC

init_glah_meta

check_cntl

ESDT

control

leapsec

metadata

GLAS_HDF

open

create

GLAS_BIN

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

12-3

12.2 glaxx_h5_convert

glaxx_h5_convert is the Fortran program that implements the PGE. It is mostly a
processing shell that calls library routines and the glahxx_api subroutines. The primary
unique functionality implemented in glaxx_h5_convert involves copying data from the
GLAS_BIN to the GLAS_HDF data structures. Execution flows through
glaxx_h5_convert as follows:

• Initialize global constants

• Print status information

• Open the HDF5_LIBRARY

• Call main_init

• Initialize and allocate each rate group

• For each record on the GLAS_BIN product…
o Read the record

o Convert the GLAS_BIN product variables to algorithm (scientific units)
variables.

o Copy data from the GLAS_BIN data structure to the GLAS_HDF data
structure, performing any required interpolation. Skip any spare or
unimplemented data.

• Write the GLAS_HDF data structure to the GLAS_HDF file

• Set the dimension scales

• Create HDF5 hard links from time dimension scales back to logical time group

• Close the rate group

• Write metadata

• Close metadata groups

• Close the GLAS_HDF file.

• Print status information
Figure 12-2 shows this sequence graphically.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

12-4

Figure 12-2 glahxx_h5_convert

Each Rate Group

Each Rate Group

glaxx_h5_convert

end

const_glob_init
print_start_banner

H5open_f
main_init

h5_create_glaxx_rg
allocate_glaxx_rg

h5_write_glahxx_meta

close_h5_file

GLAS_BIN

glaxx_P2A

read

copy/interpolate
data

GLAS_BIN
EOF ?

A

No

GLAS_HDF

h5_write_glahxx_rg_chunk
h5_set_glahxx_rg_ds
H5L_create_hard_f
h5_close_glahxx_rg

close

B

yes

groups
parameters

meta

data

Control

TAI-UTC

ESDT

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

12-5

12.3 Handling Multi-Rate Data

Most of the modifications a programmer must perform on the generated
glahxx_h5_convert code involve copying multi-rate data from GLAS_BIN to
GLAS_HDF data structures. GLAS_BIN “records” handle multi-rate data by using
arrays within the record. GLAS_HDF “records” are temporally flat. For example,
consider a theoretical array of measurements recorded at a 5 Hz rate. GLAS_BIN would
store these as a 5-element array within a 1 second record. GLAS_HDF would store these
as single elements within 5 Hz records. The difference in layouts is illustrated in Figure
12-3.

Figure 12-3 Data Storage Comparison

The transfer of multi-rate data is accomplished with a “flattening” technique. A simple
loop is used to copy each GLAS_BIN element to the appropriate location in GLAS_HDF.
In the infrequent cases where multi-rate data are required, math_lib supplies a couple of
different mathematical routines to achieve the desired interpolation.

12.4 Product-Specific Model Deviations

Most of the product conversion PGEs directly follow the glahxx_h5_covert model. There
are a couple of exceptions where deviations were necessary.

T1 T2 T3 T4 T5

X1 X2 X3 X4 X5

Tx=time stamp; Xx=measurement

T1

T2

T3

T4

T5

X1

X2

X3

X4

X5

GLAS_BIN
Record

GLAS_HDF
Record

GLAS_HDF
Record

GLAS_HDF
Record

GLAS_HDF
Record

GLAS_HDF
Record

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

12-6

12.4.1 gla04_h5_convert

GLAH04 GLAS_HDF was defined as a single file. GLA04 GLAS_BIN files were
implemented as multiple files. The gla04_h5_convert PGE was required to read multiple
input GLAS_BIN files (one for each GLA04 subtype) and write a single GLAH04 file.
This deviation was implemented in two major steps: 1) main_init was modified to accept
multiple input files and 2) the data-copying portion of the gla04_h5_convert code was
modified to copy data from the appropriate GLA04 data structure.

12.4.2 gla01_h5_convert

Waveforms are the most basic and useful measurement collected by the GLAS laser
altimeter. Most of the primary science measurements are generated from waveforms.
Waveform storage on the GLA01 GLA_BIN product was less than optimal, so additional
requirements were leveled on GLAS_HDF to improve waveform accessibility.

In particular, the altimeter waveform does not fit well within the dimension scale
concept. Sample location changes with surface and return signal condition. The
waveform samples are a two-dimension array where samples are taken at intervals for 5
possible sample locations (ranges) within the waveform. The first dimension scale is time
since the array is time-based. The second dimension scale corresponds to the sample
locations within the waveform relative to the sample farthest from the spacecraft.
However this changes based on compression type and a land/water mask, so the design
uses an index to another array that is a dimension scale that matches the waveform
dimension scale. Both the waveform samples and the sample locations are dimensioned
with values 1 to 544. The waveform has the return signal level in volts for each sample 1
to 544 and an index to the sample locations first dimension (1 to 5). For a specific
waveform the sample location (index,i) where i is the same dimension scale 1 to 544 as
the waveform and has the distances in nanoseconds for each sample relative to the sample
farthest from the spacecraft for that waveform.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

13-1

13.0 GLAH_META COMPONENT

glah_meta is the PGE that extracts metadata from a GLAS_HDF file and writes it ECHO
format to a detached metadata file (MET). Most of glah_meta is a reuse of the code that
instantiated the GSAS glas_meta PGE. Since the metadata extraction process is generic, a
single PGE is used for all of the GLAS_HDF filetypes. glah_meta is implemented as a
main Fortran program (glah_meta) and an initialization module (main_init).

13.1 main_init

main_init provides initialization functions for glah_meta. It is virtually identical to the
main_init routine described within glaxx_h5_convert and only two major differences are
discussed here.

glah_meta must store QA information passed via control in each MET file. The QA
information was originally generated by GSAS after a GLAS_BIN granule was produced,
stored in a database and added to GLAS_BIN MET files by the GSAS glas_meta PGE.
Since this information is not stored on the GLAS_BIN products, the same functionality is
replicated by glah_meta. main_init parses the QA information from the glah_meta
control files and returns it to glah_meta.

Likewise, NOSE information was provided within the GLAS_BIN MET files, but not
within the GLAS_BIN files themselves. Ancillary PASSID information is required to
generate NOSE data and this information is read from control and returned to glas_meta.

13.2 glah_meta

glah_meta is the Fortran program that implements the PGE. It is mostly a processing
shell that calls library routines but does have logic to handle QA and NOSE information.
Execution flows through glah_meta as follows:

• Initialize global constants

• Print status information

• Open the HDF5_LIBRARY

• Call main_init

• Parse information from the ESDT file.

• Read ancillary and grouped metadata from the GLAS_HDF file.

• Calculate the NOSE bin numbers.

• Read 1Hz time, lat, lon and attflg from the GLAS_HDF file.

• Calculate NOSE information.

• Write the MET file in ECHO format.

• Close the GLAS_HDF file.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

13-2

• Print status information
This sequence is illustrated graphically in Figure 13-1.

Figure 13-1 glah_meta

13.3 glah_meta Product Input

glah_meta requires 1Hz time, position, and flag data from the GLAS_HDF file to
compute NOSE information. This is an excellent example where using the
HDF5_LIBRARY H5LT interface is simpler and more efficient that using the glahxx_api
interface. Using the glahxx_api would require reading all of the GLAS_HDF parameters
when only four are actually necessary.

glah_meta

end

const_glob_init
print_start_banner

H5open_f
main_init

parse_esdt

read_glah_meta

GLAS_HDF

ESDT

calc_geobins

h5lt_read_f

clear_nose_bins
set_nose_info

write_metafile

close_h5_file

MET

ControlTAI_UTC

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

13-3

The following is a code fragment that shows how to use the H5LT interface to read a
single element from a GLAS_HDF file:
call h5ltread_dataset_f(fs_in(1)%h5file_id, "/Data_1HZ/Time/d_UTCTime_1", &
 H5T_NATIVE_DOUBLE, UTCTime, dims, i_res)

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

14-1

14.0 GLAH_BRW COMPONENT

The glah_brw process is instantiated as a single IDL program, hdf2hdf5.pro. It copies
browse images from a HDF4-format GLAS_BIN browse (BRW) file into a /BROWSE
group on the corresponding GLAS_HDF product. The code is very generic and can
easily be modified for other similar purposes. (It was actually submitted as example code
to the HDFGroup after support couldn’t provide an easy method to implement it.)

The design decision to implement this functionality in IDL was primarily driven by the
fact that IDL supports both versions 4 and 5 of the HDF_LIBRARY. The other factor
was that the GSAS BRW creation code was written in IDL and was available to re-use as
part of hdf2hdf5.

A complication of the copy process is that the native image format changed between
HDF4 and HDF5. The image format for HDF4 was an indexed color bitmap. The native
image format for HDF5 is TrueColor. hdf2hdf5 implements this image conversion
process fairly easily using IDL native functions.

The hdf2hdf5 processing sequence follows:

• Open input HDF4 BRW file.

• Open output GLAS_HDF5 (for modification, not rewrite).

• Create a /BROWSE group on the GLAS_HDF file.

• Get the number of images in the HDF4 BRW.

• For each image…
o Read the image from the BRW file.
o Convert the image to TrueColor.

o Write the image as chunked data to the /BROWSE group on the
GLAS_HDF file.

• Close the open files.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

15-1

15.0 GLA_CODEGEN COMPONENT

gla_codegen is a utility PGE that creates glahxx_api code for a specific product type. The
generated code is highly-specific to the MABEL/GLAS_HDF implementation of HDF5
products.

15.1 Developmental Considerations

glas_codegen was developed specifically for GLAS_HDF. The concept, however, was
borrowed from a more simplistic shell script-based code-fragment generator used for
MABEL. During MABEL product development, it was recognized that the routines
required to instantiate different product types were nearly identical. The only major
changes between two implementations were the names and attributes of the data
parameters.
Another developmental consideration that made creation of gla_codegen attractive was
that the GLAS product database contained the names, type, and dimensions of each
parameter contained within a GLAS_BIN file. In addition, it contained a significant
number of the values required to add CF attributes to the parameters. A code generator
could leverage that content to make product API generation nearly automatic.

In the end, the sheer volume of code necessary to implement the product APIs and the
availability of the GLAS Product Database made the gains of developing code-generation
capability outweigh the cost.

15.2 Implementation

Much of the code-generation functionality is embedded in the h5_codegen module
located within common_lib/hdf_lib. The h5_codegen module contains generic functions;
gla_codegen provides GLAS_HDF-specific functions. The gla_codegen PGE writes a
Fortran module for each rate group defined in the product specification.

15.2.1 h5_codegen

h5_codegen is essentially a collection of form-generator subroutines that write Fortran
code based on data structures that describe the product format and content. The following
code fragment illustrates the data type that contains grouping information.
type, public :: in_group_type
 character(len=MAXSTR) :: &
 gkey, & ! Group key
 glab, & ! Group label
 gcoords, & ! Comma-separated list of coordinate variables
 ghertz, & ! Data rate (hertz)
 gtimeparam ! The time parameter
 character(len=MAXLINE) :: &
 gdesc ! Group description
 integer :: &
 rnum ! Index number of encompassing rate group
end type in_group_type

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

15-2

This group type is instantiated as two allocable arrays of grouping information forming
linked lists. g_garr contains logical group information. g_rarr contains rate group
information. Each logical group element contains a pointer to its encompassing rate
group element.
The next code fragment illustrates the data type that contains parameter information.
type, public :: in_stru_type
 character(len=MAXSTR) :: &
 long_name, & ! Short description/long name
 init_value, & ! Initialization value
 a_name, & ! GSAS algorithm variable name
 cf_name, & ! CF standard name
 a_dtype, & ! GSAS algorithm data type
 a_h5type, & ! HDF5 native data type
 a_h5outtype, & ! HDF5 output data type
 att_sub, & ! H5 attribute subroutine
 p_sub, & ! H5 read/write subroutine suffix
 a_dsize, & ! GSAS algorithm data size
 slen, & ! GSAS algorithm character length
 a_scale, & ! GSAS algorithm scale factor
 a_units, & ! GSAS algorithm units
 a_min, & ! GSAS algorithm min
 a_max, & ! GSAS algorithm max
 a_flag_values, & ! CF comma-separated flag values
 a_flag_meanings, & ! CF space-delimited flag meanings
 a_invalid ! GSAS algorithm invalid value
 character(len=MAXLINE) :: &
 desc ! Description
 integer :: &
 gnum, & ! Index number of logical group
 rnum ! Index number of rate group
end type in_stru_type

The parameter type is instantiated as two allocable arrays that contain information for
each parameter on the target product. One (g_full_var) contains all the parameters on the
target product. The other (g_varr) contains only the parameters contained within the
active group. Indexes are provided which link each parameter to a specific logical group
and a specific rate group.

The final pieces of information needed by h5_codegen are the identifiers of the project
for which the code is being generated and the file id of the data product.

Once each of these data structures have been filled with valid information, each of the
h5_codegen subroutines can be called to write a specific piece of product API code.
h5_codegen subroutines are listed in Table 15-1.

Table 15-1 h5_codegen Subroutines

Subroutine Description

write_module_start Writes the API module start and definitions

write_init Writes the API data initialization subroutine

write_alloc Writes the API allocation/deallocation subroutines

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

15-3

Subroutine Description

write_open Writes the API group open (for reading) subroutine

write_close Writes the API group close subroutine

write_create Writes the API group creation (for write) subroutine

write_read Writes the API group chunked read subroutine

write_write Writes the API group chunked write subroutine

write_print_attr Writes the API parameter attributes print subroutine

write_print_head Writes the API parameter header print subroutine

write_print_data Writes the API parameter data print subroutine

write_data_dict Writes the API data dictionary (HTML) subroutine

write_sync Writes the API data synchronization subroutine.

write_setds Writes the API dimension scale subroutine

write_end Writes the end of API module

15.2.2 gla_codegen

gla_codegen is the GLAS_HDF program that fills the data structures required by
h5_codegen and then calls the appropriate h5_codegen routines in sequence to write
glahxx_api code. gla_codegen is implemented within a main program (gla_codegen) and
a module (gla_codegen_mod).
gla_codegen_mod provides two major functions – parsing information from the product
description to fill the h5_codegen data structures and creating the main programs for
glaxx_h5_convert and glahxx_dd.

In a major reuse of existing code, the GLAS_HDF product descriptions are written within
the context of a GLAS_HDF control file. The control file creation process is fully
documented in Appendix C with the end result being the information that exists in the
GLAS Data Dictionary transformed into the information necessary to fill the h5_codegen
data structures. The resulting control file contains product-specific labeling information
and then the product description. An example is shown below. (The product description
lines are not shown here but detailed in Appendix C).
=gla_codegen
project=GLAS_HDF
product=GLAH15
gla_product=GLA15
=data-dict
…

gla_codegen_mod subroutines are listed in Table 15-2.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

15-4

Table 15-2 gla_codegen_mod Subroutines

Subroutine Description

parse_dtype Parses the HDF5 datatype and datasize from input GSAS datatype.

read_prod_cntl Reads and parses the gla_codegen control file.

write_main_init Writes the glaxx_h5_convert main_init subroutine

write_main Write the glaxx_h5_convert main program.

write_gen_dd Writes the glahxx_dd main program.

gla_codegen calls routines from gla_codegen_mod and h5_codegen_mod to write the
glaxx_api code. For safety, h5_codegen uniquely names all the output files by prefixing
“autogen_” to the name. This is intended to prevent coders from accidently overwriting
modified files.

The gla_codegen processing sequence follows:

• Read the product specification control file.

• Fill the h5_codegen data structures.

• Create, write and close the glahxx_dd.f90 file.

• Create, write and close the main_init_mod.f90 file.

• Create, write and close the glaxx_h5_convert.f90 file.

• For each rate_group (rg) in the product specification…
o Create the glaxx_rg_mod.f90 file.
o Create a subset of the parameters in the rate_group to fill g_varr

o Call h5_codegen subroutines to write subroutines within
glaxx_rg_mod.f90

o Close the glaxx_rg_mod.f90 file.

• Deallocate data structures.
This is illustrated graphically in Figure 15-1.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

15-5

Figure 15-1 gla_codegen

.

Each Rate Group
(rg)

glah_codegen

end

const_glob_init
print_start_banner

H5open_f
read_prod_cntl

write_gen_dd

Control

glahxx_dd.f90

write_main_init main_init.f90

write_main glaxx_h5_convert.f90

write_module_start
write_init

write_h5init
write_alloc
write_open
write_close
write_create
write_read
write_write

write_print_attr
write_print_head
write_print_data
write_data_dict

write_sync
write_setds
write_end

glaxx_rg_mod.f90

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

1

APPENDIX A. REQUIREMENTS TRACE

REQUIREMENTS

The following table traces each GLAS_HDF requirement to sections within this
document that describes an implementation that satisfies the requirement.

Identifier Requirement Trace

REQ_GLAS_HDF_001 The software shall transform GLAS
integer-binary products into a standards
compliant format.

REQ_GLAS_HDF_001.1 The software shall use HDF5 as the
standard data product file format (ESDS-
RFC-007).

REQ_GLAS_HDF_001.2 The software shall create the products
with HDF5 CF-compliant parameter
attributes to make the products self-
documenting. This will allow data
dictionaries to be created directly from the
products themselves.

REQ_GLAS_HDF_001.3 The software shall create the products
with NetCDF-compliance in mind. This
may allow the products to be used with
NetCDF/HDF tools.

REQ_GLAS_HDF_001.4 The software shall use compression where
possible to decrease the size of the
products.

14.0

REQ_GLAS_HDF_001.5 The software shall perform only
transformation processes. No new science
parameters shall be created.

12.2

REQ_GLAS_HDF_001.6 The software shall not put “spare” or un-
implemented parameters on the products.

12.2

REQ_GLAS_HDF_002 The software shall make efforts to
improve the usability of the products.

REQ_GLAS_HDF_002.1 The software shall create products in such
a manner that individual data values may
be independently read.

REQ_GLAS_HDF_002.2 The software shall logically group
parameters, but at a level where desired
data are not hidden.

REQ_GLAS_HDF_002.3 The software shall transform the
parameters from scaled-integer units into
scientific units.

12.2

REQ_GLAS_HDF_002.4 The software shall provide a mechanism
whereby each instance of a parameter can
be associated with a time stamp and a

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

2

Identifier Requirement Trace

laser shot number.

REQ_GLAS_HDF_002.5 The software shall store variable-rate
waveforms in volts and provide relative
sample times that will enable easy
decompression of the waveforms.

REQ_GLAS_HDF_002.6 The software shall incorporate multi-rate
data within the same product.

12.3

REQ_GLAS_HDF_002.7 The software shall incorporate existing
browse information into the products
where available.

REQ_GLAS_HDF_002.8 The software shall unpack bit flags where
existing unpack routine already exist.

12.2

REQ_GLAS_HDF_003 The software shall incorporate metadata
into the products.

REQ_GLAS_HDF_003.1 The products will incorporate both
human-readable and computer-parseable
metadata.

REQ_GLAS_HDF_003.2 The software shall support the same
method of metadata exchange with
NSIDC as the GLAS_BIN products.
(External .MET files in ECHO format.)

REQ_GLAS_HDF_003.3 The software will store lineage metadata
on the products such that prior processing
information is not lost.

REQ_GLAS_HDF_003.4 The software shall support product-level
digital object identifiers (DOIs) as defined
by the ESDIS pilot DOI effort.

REQ_GLAS_HDF_003.5 The software shall support UUIDs as
granule-level unique identifiers to extend
the ESDIS pilot DOI effort.

REQ_GLAS_HDF_004 The software shall re-use existing
software to the maximum extent possible.

REQ_GLAS_HDF_004.1 The software shall re-use existing GLAS
Science Algorithm Software (GSAS).

REQ_GLAS_HDF_004.2 The software shall re-use existing
MABEL Science Algorithm Software.

15.0

REQ_GLAS_HDF_004.3 The software shall be written to interface
with re-used I-SIPS SDMS middleware
for data management and job control.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

1

APPENDIX B. DIRECTORIES, MAKEFILES AND COMPILATION

DIRECTORIES

A directory tree of the GLAS_HDF source code and a description of each directory
follows.

Directory Description

. Contains the master Makefile

./bin Contains the common_libs and glas_hdf PGEs and utilities.

./idl Contains generic IDL code.

./include Contains include files for Makefiles.

./common_libs Contains the common_libs Makefile

./common_libs/bin Contains the common_libs PGEs and utilities.

./common_libs/doc Contains common_libs documentation.

./common_libs/lib Contains common_libs static libraries.

./common_libs/modules Contains common_libs Fortran .mod files.

./common_libs/src Contains common_libs/src Makefiles

./common_libs/src/anc_lib Contains anc_lib Fortran code and Makefile.

./common_libs/src/cntl_lib Contains cntl_lib Fortran code and Makefile.

./common_libs/src/const_lib Contains const_lib Fortran code and Makefile.

./common_libs/src/err_lib Contains err_lib Fortran code and Makefile.

./common_libs/src/hdf_lib Contains hdf_lib Fortran code and Makefile.

./common_libs/src/math_lib Contains math_lib Fortran code and Makefile.

./common_libs/src/mutil_lib Contains mutil_lib Fortran code and Makefile.

./common_libs/src/time_lib Contains time_lib Fortran code and Makefile.

./common_libs/src/util Contains common_libs/util Makefile

./common_libs/src/util/minmax Contains minmax utility Fortran code and Makefile.

./common_libs/src/util/timeconv Contains timeconv utiltiy Fortran code and Makeilfe.

./glas_hdf Contains glas_hdf Makefile.

./glas_hdf/bin Contains glas_hdf PGEs and utilities.

./glas_hdf/data Contains static ancillary files.

./glas_hdf/data/esdts Contains ESDT files.

./glas_hdf/doc Contains glas_hdf documentation.

./glas_hdf/idl Contains glas_hdf IDL code.

./glas_hdf/lib Contains glas_hdf static libraries.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

2

Directory Description

./glas_hdf/modules Contains glas_hdf Fortran .mod files.

./glas_hdf/src Contains glas_hdf/src Makefile.

./glas_hdf/src/gla01_hdf5 Contains gla01_hdf Fortran code and Makefile.

./glas_hdf/src/gla02_hdf5 Contains gla02_hdf Fortran code and Makefile.

./glas_hdf/src/gla03_hdf5 Contains gla03_hdf Fortran code and Makefile.

./glas_hdf/src/gla04_hdf5 Contains gla04_hdf Fortran code and Makefile.

./glas_hdf/src/gla05_hdf5 Contains gla05_hdf Fortran code and Makefile.

./glas_hdf/src/gla06_hdf5 Contains gla06_hdf Fortran code and Makefile.

./glas_hdf/src/gla07_hdf5 Contains gla07_hdf Fortran code and Makefile.

./glas_hdf/src/gla08_hdf5 Contains gla08_hdf Fortran code and Makefile.

./glas_hdf/src/gla09_hdf5 Contains gla09_hdf Fortran code and Makefile.

./glas_hdf/src/gla10_hdf5 Contains gla10_hdf Fortran code and Makefile.

./glas_hdf/src/gla11_hdf5 Contains gla11_hdf Fortran code and Makefile.

./glas_hdf/src/gla12_hdf5 Contains gla12_hdf Fortran code and Makefile.

./glas_hdf/src/gla13_hdf5 Contains gla13_hdf Fortran code and Makefile.

./glas_hdf/src/gla14_hdf5 Contains gla14_hdf Fortran code and Makefile.

./glas_hdf/src/gla15_hdf5 Contains gla15_hdf Fortran code and Makefile.

./glas_hdf/src/glah_meta Contains glah_meta Fortran code and Makefile.

./glas_hdf/src/gsas_lib Contains gsas_lib Fortran code and Makefile.

./glas_hdf/src/util Contains utility Makefile.

./glas_hdf/src/util/glas_codegen Contains glas_codegen Fortran code and Makefile.

MAKEFILES

GLAS_HDF code is built using cascading Makefiles. The Makefiles force the required
order of compilation. However, since common_libs is compiled as a static library and
each PGE is independent of the others, a developer can build the complete system at the
top level and then use the local Makefile to compile only the code he is modifying.

GLAS_HDF Makefiles are configured to support the Linux/gfortran development
environment. However, by modifying the ./glas_hdf/include/make_defaults.incl file, a
developer can customize the compiler, link options, and compiler flags.
BUILDING

To compile common_libs and glas_hdf, start at the top level of the development tree and
clean the development tree by typing ‘make clean’. Build the development tree by typing
‘make’.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

1

APPENDIX C. GLAS_HDF PRODUCT DEVELOPMENT PROCEDURES

SPREADSHEET DEVELOPMENT

Submit a Jira item for product development.

Export the information from the GLAS Product Database into an Excel spreadsheet.
Remove the ‘spare’ fields.

Create the rate and logical groups. Be sure to add a control file keyword at the front and a
description at the end. Use “/” to distinguish subgroups. Each rate group within the
spreadsheet must contain the following information:

• Column A – Keyword and Group identifier (e.g.: RateGroup=d1)

• Column B – Group Label (e.g.: Data_1Hz)

• Column C – Coordinate parameter(s) (e.g.: DS_UTCTime_1)

• Column D –Time variable (e.g.: DS_UTCTime_1)

• Column E – Data Rate in Hz (e.g.: 1)

• Column P – Description

At least one Dimension Scale line follows each rate group. The line has the keyword
“DimensionScale=” in column A. The rest of the row is formatted exactly like a
parameter description row.
Each logical group within the spreadsheet must contain the following information:

• Column A – Keyword and Group identifier (e.g.: RateGroup=d1)

• Column B – Group Label (e.g.: Data_1Hz)

• Column P – Description
Split out the packed flags and give them meaningful names.
Add/Update the following columns in each parameter row. flag names

• flag_meanings

• flag_values

• cf standard names

• units compliant with UDUNITS

• descriptions that need wording changes.
Verify that each variable datatype is one of the following. Anything else will not work
with the code generator and must be handled manually.

• i1b, i2b, i4b, r4b, r8b, char

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

2

Verify that each invalid value is one of the following and represents scientific units.
Anything else will not work with the code generator and must be handled manually.
There is no mechanism in HDF for associating a flag variable with a field. Use "not_set"
for those that don't make sense.

• invalid_i1b, invalid_i2b, invalid_i4b, invalid_r4b, invalid_r8b, (blank) | not_set
Convert “min” and “max” in terms of scientific units. Put 'not_set' where min/max does
not make sense.

Save the spreadsheet to the repository.
CODE DEVELOPMENT

Compile the glas_hdf code:
cd <workspace>
 make clean
 make

 If nothing failed you should be left with (at least) the code generator binary in the
workspace bin directory : <workspace>/bin/glah_codegen
cd to the directory associated with your target product. example:
<workspace>/glas_hdf/src/gla05_hdf.
Step 2. Verify Spreadsheet

Verify that the Excel spreadsheet is correct. It is very important to do this at the
beginning since errors in the spreadsheet will only show up after you have done a lot of
work on step 3 getting to step 4. The fewer time you get kicked back to this point, the
smoother things will be.

Step 3. Create Control File
To begin code development, download the Excel version of the spreadsheet from the
repository. Open it in Excel and Save As tab-delimited text file. IF NECESSARY,
convert the carriage returns (CR) to linefeeds (LF). Rename the spreadsheet to
something like glah06_format.ctl (or glah13_format.ctl, etc.).
Edit the spreadsheet (now – control file) and insert the required control-file breaks and
keyword/value fields at the top. The section breaks delineate the control files-style
variables definitions from the product description. Required variable definitions are the
"project" and "product". CAPITALIZATION counts. The project should be
"GLAS_HDF" and the product should be "GLAHxx". Make sure any version
information or column title lines are commented out.
See example below:

Control File-style sections
=gla_codegen
 project=GLAS_HDF
 product=GLAH06
 gla_product=GLA06
 =data-dict

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

3

 # Version 20120423-1 jelee1
 #Keyword Group Label CF Standard Name Product Var Name (not
used) Long Name Name Datatype Algorithm Scale Units Min
Max Invalid Implementation Note flag_values flag_meanings
Description

Be aware that the code generator currently supports only rank=1 and rank=2 arrays (I
don't really think this is an issue with GLAS data...but maybe atmosphere?). Also be
aware that every multi-dimension parameter MUST has an associated dimension scale.
For example, on GLAH07, i_g_mbscs is dimensioned (548). The 548 represents the
number of profile bins from 40 to -1 km for 532. So you would need to create a new
dimension scale at the root level called "DS_40_m1km" whose description would be
"532 profile bins from 40 to -1 km." That would be an integer dimensioned(548) and
have values from 1-548. Since the same 548 is used other places, you only need to create
the instance once and then you can write custom code to assign the 548 to the correct
parameters.
Step 4. Run gla_codegen

This assumes you are in the directory associated with your target product (step 1).
Run the code generator:
../../bin/gla_codegen <cntl_file>

If an error occurs, revert to Step2. Otherwise, if it worked, you will be left with 5
modules of generated code, for GLAH06, these modules were
autogen_GLA06_h5_convert.f90
autogen_GLAH06_d1_mod.f90
autogen_GLAH06_d40_mod.f90
autogen_GLAH06_dd.f90
autogen_main_init_mod.f90

Rename these modules by removing the "autogen_" part of the name.

Create a Makefile (best practice = copy/modify the one from the gla06_hdf subdirectory)

Try to compile by typing 'make'
Step 5. Fix legacy GSAS

Fix the legacy GSAS code so that it will compile. All the required legacy GSAS code
should be copied as AccuRev versioned item into its respective target directory. You can
use AccuRev to look at the changes to the GLA06 code to get an idea of what needs to be
fixed. If this is taking longer than a half-hour to complete, something is wrong. The
following is an example of change required for GLAH13:
++ GLA13_prod_mod

Replace the module definitions with
 use kinds_mod
 use const_gsas_mod
 use c_compare_mod
 use textutil_mod

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

4

 use singleline_mod

 ++ GLA13_hdr_mod

Get rid of all the pre-processor directives (e.g.: #ifdef...)
Replace the module definitions with
 use kinds_mod
 use const_glob_mod
 use const_gsas_mod
 use common_hdr_mod
 use prod_def_mod
 use error_mod
 use keyval_mod
 use anc45_meta_mod

Search and replace "fstruct_sub_type" with "fstruct_type"
 Change: call parse_keyval(header(i_start:i_end),keyval)

 To: call parse_keyval(header(i_start:i_end),keyval, ErrorSeverity)

 ++ GLA13_alg_mod
 Replace the module definitions with
 use kinds_mod
 use const_gsas_mod
 use c_compare_mod
 use textutil_mod
 use singleline_mod

 ++ GLA13_scal_mod
 replace: use const_glob_mod

 with: use const_gsas_mod
 add: use textutil_mod

Step 6. Update the autogen code
The next step is updating the autogen code. WITH ANY LUCK, you will only have to
touch the main program (gla06_h5_convert) and the rate group routines (e.g.:
glah06_d1_mod.f90 and glah06_d40_mod.f90).

Within the rate group routines, the majority of the changes involve support for additional
DimensionScales. You can use AccuRev to compare versions of GLAH13, 14, or 15 to
see the changes that were necessary (GLAH06 is a bad example in this case because it
was the guinea pig product during development).

For the main program, this is where all the logic of converting the data from GLA to
GLAH is done. Look at the example routines for GLA13, 14, or 15. Things you should
look for include:
Creating additional loop(s) within the main processing loop to flatten the mult-rate data.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

5

Setting all GLAH flags to their appropriate GLA equivalent.
Using the interpolation routines to interpolate any parameters that need interpolation.

Adding to code to set the shot counter (for all rate groups)
Uncommenting the example code to create a hard link from the dimension scale times
back to the Time group. (for all rate groups)
Step 7. Compile

When you compile, you may need to refresh your workspace in order to see changes
merged by other developers. To do this, in the AccuRev GUI, click the green lightning
bolt in the upper left side of the toolbar.
Then, rebuild everything by doing this:
cd <workspace>
make clean
make

To compile your conversion program, copy a Makefile from an existing conversion
program (i.e.: gla06_hdf5/Makefile). Change the references from GLA06/GLAH06 to
the appropriate fileid. Add/delete any necessary rate group modules.

Then,
make clean
make

Step 8. Add Sources to the Depot

Use the AccuRev GUI to select each newly-created source file (This is most likely only
the files you renamed from autogen*) and the Makefile. Select "Actions->Add to
Depot". You now have saved, versioned copies of your source code in the AccuRev
depot. Anytime you wish to keep a local version of the file you are working on, from the
AccuRev GUI, select the file and then "Actions->Keep". You may have to set the Search
filter (on the bottom left of the GUI) to display "External" files to initially see the files
you are adding.
Step 9. Promote Sources to Your Working Stream

Files in an AccuRev workspace reside within local disk storage. To allow others to see
your work, you need to promote the source code to your working stream. To promote a
file to your working stream, select the file within the AccuRev GUI and select "Actions-
>Promote". You may need to alternately set the Search filter (on the bottom left of the
GUI) to display "Pending" and "Modified" files to see what changes need to be promoted.
There is currently a problem with AccuRev/Jira integration. When you promote, you will
be asked to select a Jira item to associate the changes with. At this point, just select
whatever item is closest to what you are working on. Hopefully this will be fixed soon.
Step 10. Merge to Integration Branch

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

6

You should only merge to the integration branch once approval has been given by the
CCB. Merging is as simple as dragging the change packages (visible in the stream
browser) from your working stream to the integration stream.

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

7

APPENDIX D. GLOSSARY AND ACRONYMS

A2P Algorithm-to-Product Conversion

ALT Altimeter or Altimetry, also designation for the EOS-Altimeter spacecraft series

ANCxx GLAS Ancillary Data Files

API Interface used by software components to communicate with each other.

APID GLAS Level-0 Data file

ATBD Algorithm Theoretical Basis Document

ATM Atmosphere

CCB Change Control Board

DAAC Distributed Active Archive Center

EDOS EOS Data and Operations System

ELEV Elevation

EOS NASA Earth Observing System Mission Program

EOSDIS Earth Observing System Data and Information System

GB Gigabyte

GLAS Geoscience Laser Altimeter System instrument or investigation

GLAxx GLAS Science Data Product Files

GLAHxx GLAS Science Data Product Files reformatted into HDF5.

GPS Global Positioning System

GSAS GLAS Science Algorithm Software

GSFC NASA Goddard Space Flight Center at Greenbelt, Maryland

GSFC/WFF NASA Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia

HDF4 Hierarchal Data Format Version 4

HDF5 Hierarchal Data Format Version 5

HDF-EOS EOS-specific Hierarchical Data Format

I-SIPS Icesat Science Investigator Led Processing System

I/O Input/Output

ICESAT Ice, Cloud and Land Elevation Satellite

ID Identification

IEEE Institute for Electronics and Electrical Engineering

KB Kilobyte

L0 Level 0

L1A Level-1A

L1B Level-1 B

GLAS_HDF Detailed Design

 Revision -

Release Date: November 1, 2012

8

L2 Level-2

LASER Light Amplification by Stimulated Emission of Radiation

LIDAR Light Detection and Ranging

LPA Laser Pointing Array

LRS Laser Reference System

MB Megabyte

MET Detached metadata file

N/A or NA Not (/) Applicable

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

NOSE Nominal Orbital Spatial Extent

P2A Product-to-Algorithm Conversion

PDF Portable Document Format

PGE Product Generation Executable

QA Quality Assessment

SDMS Scheduling and Data Management System

SDP Standard Data Products

SSRF Science Software Requirements Document

UTC Universal Time Correlation

WF Waveform

